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REMARKS ON UNIQUENESS AND BLOW-UP
CRITERION TO THE EULER EQUATIONS
IN THE GENERALIZED BESOV SPACES

TAKAYOSHI OCAWA AND YASUSHI TANIUCHI

ABSTRACT. In this paper, we disscuss a uniqueness problem for the
Cauchy problem of the Euler equation. We give a sufficient condition
on the vorticity to show the uniquness of a class of generalized solu-
tion in terms of the generalized Besov space. The condition allows
the iterated logarithmic singularity to the vorticity of the solution.
We also disscuss the break down {or blow up) condition for a smooth
solution to the Euler equation under the related assumption.

1. Intreduction

We discuss on the uniqueness and blow-up problem for the Euler
equations:

Ou+u-Vu=-Vp, t >0,z €R",
(1.1) divu =0, t >0,z €R",
u(0, ) = up(z).

Here u = u(t, z) = (u!(t,z),4%(t,z),- - -, u"(¢, z)) and p = p(t, z) denote
the unknown velocity and the unknown pressure of the incompressible
ideal fluid, respectively, while ug(z) = (u§(z), ud(z), - -, ug(x)) is a given
initial data.

We first consider the uniqueness of generalized solutions of the Euler
equations (1.1). We call a measurable function u as a generalized solution
of (1.1) if u satisfies the following conditions:

(i) w e L=(0,T; H}),
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(ii) f;{—(u,&@) + (u- Vu, @)} dr = —(u(t), 8(t)) + (u(s), ®(s)) for
every 0 < s <t < T and every ® € C ([0, T]xR") with div & = 0,
(iil) [lu(t)]l2 < ||uoll2 for almost all 0 <t < T

Here C§%, denotes the set of all C™ vector functions ¢ = (¢!, ¢*, -, ¢")
with compact support in R", such that div ¢ = 0. L7 is the closure of
Cie, with respect to the L™-norm {| - ||; (+,+) denotes the duality pairing
between L" and L”, where 1/r + 1/7" = 1. (Note that L™ stands for the
vector-valued spaces.) H; is the closure of Cf%, with respect to the H*-
norm ||¢||zs = ||(1 — A)2¢|l» for s > 0 (if u belongs to L*®(0, T; L*), the
condition (iii) is derived from (i) and (ii). Hence (iii) is not necessary
when 2 < n < 4). There are many results for the existence of the
generalized solution to (1.1). See, for example, Chae {5] under more
general setting.

Yudovich 18] proved the uniqueness of generalized solutions under
vorticity w = rot u € L'(0,T; L®). Then he extended the uniqueness
result to some classes of flows with unbounded vorticity, where the vortic-
ity may have iterated logarithm singularity ([19]). The basic argument
in proving his uniqueness result is to employ the Perron-Nagumo type
uniqueness criterion (more specifically, Osgood’s uniqueness theorem)
to the ordinary differential equations. Therefore in the assumption for
proving Yudovich’s result, it is required a continuity of solutions in time
variable.

On the other hand, in the whole space case, we showed in (12| a
different kind of uniqueness theorem under the condition w € L(log L)!/2
(0, T; B&IW(R”)), where we only used Gronwall’s theorem. It is, then,
expected that by applying Osgood’s theorem, one can obtain a slightly
better uniqueness condition on generalized solutions than the condition
we claimed in [12] (see also [16] for a solvability of (1.1) in the Besov
space).

In order to specify the assumption on the solution, we introduce a
new class of the solution that is written in the terminology of the Besov
spaces (for the Besov space, c.f. [2]). The class B;o}gg"! (defined in the
later) essentially includes the functions of the bounded mean oscillation
(BMQ) and therefore includes the logarithmic function. Moreover the
space also includes a finitely iterated logarithmic function such as
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log(e + |z1™") log(e + log(e + |z| 1)) - - - log(e + log(e + - - - log(e + lzI™1) - )

k+1-times iterated

L%

k+1—times}1ultiplied
lz| < 1.

By the aid of the logarithmic Sobolev inequality of the Beale-Kato-
Majda type, we shall show the uniqueness of generalized solutions with
w & LY(0,T; BMO), or under more general condition.

The second purpose in this paper is to discuss the continuation of
smooth solutions for the Euler equations, that is the blow-up problem.
In [1], a smooth solution of the 3D Euler equation is shown to be regu-
lar under rot u(t) € L'(0,T; L®). (We note that this corresponds with
the class which guarantees the uniqueness of generalized solution.) This
result is extended into the slightly larger class of condition in Kozono-
Taniuchi [11]. In this paper we prove the continuation of smooth solu-
tions under the same condition as in our uniqueness result [12].

After completing this work, the authors are noticed that an analogous
uniqueness result for the ideal fluid flow is obtained by Vishik [17]. This
result is also based on Yudovich’s argument in the borderline of the
Besov space. However the detailed argument seems different from ours.
The authors are grateful to Misha Vishik for sending us the preprint.

2. Preliminaries

Before presenting our results, we recall some notations and definition
of the Besov spaces (c.f., [15]). Let ¢;, j = 0,41,£2,43,--- be the

Littlewood-Paley dyadic decomposition satisfying (53‘ (&) = ¢(279¢) and
(o4}
E <;3j(§) = 1 except £ = 0. We put a smooth cut off ¢ € S(R") to fill

Jj=—00

the origin, where ¥/(¢) € C°(B,) and B) = {x € R™: |z| < 1} such that
Y+ di(E) =1

J=0
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DEFINITION. The homogeneous Besov space B = {f € &,
oo} is introduced by

/\

I1f

B Z 12756 + F115)V*

e

forseR, 1<p,p< 0.
Now we introduce a generalization of the Besov space. Let

log™ t = max(0,logt),

(log™)kt =log*log™ - -log™ t;

k-times iteration
€ = expexp---exp I,
e —

r-times iteration
fork=1,2,---

and

log™t =1,
log®™ t =(log™ t)(log™ log™ t)(log* log* log™ t) -- - (log*)¥¢,  for t > ep.
Note that the series {(nlog*" n)-1 e E I

DEFINITION. B, %" = {f ¢ &, 171l y-et < 00} is introduced by
P

co

1l g =(D og® 51 + ey 7ligy + £V for p < oo,
j=—o0

1l = sup (log™ (5] + ex)) 19 * flo-
— 0L j< 00

It is easy to see the inequality

1o < 171, < CUS maro
holds for f € BMO, where BM O is characterized by

¢ L) sup
felle sw oy,
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Therefore log |z|~! is included in B, _l"? ", Moreover the singular function;

log™” 2|1 is also included in B! l°g“ B

We next recall Osgood’s umqueness theoremn which plays important
role in proving new uniqueness result for the Euler equations. We state
a slightly general case.

LEMMA 2.1 (Osgood). Let ® be nonnegative function on (0,T) with
Joo ®(t)dt < 0o, let ¥(t} be continuous for t > 0 and nondecreasing near
t = +0 and ¥(0) = 0, ¥(v) > 0 if v > 0 and let [ dv/¥(v) = co.
Assume that v € L®(0,T) and

0<o(t) < / ®(r)T{v(r))dr a.e. 0 <t <T.
Then v(t) = 0 for almost all t € [0,T].

Lemma 2.1 is simply proved by setting V(t) = fo O{r ) (v ‘r))d‘r
If we assume V(t) > 0 for ¢ € (0,7, then since V{t) solves V'(t) <
2(1)¥(V(t)), we reach a contradiction to the assumption. For more
detailed proof and related theorem, see for example, Hartman [7] p.33.

We should note that t, tlog(1/t+e), tlog(1/t+e)loglog(1/t +€°), -
satisfy the hypotheses on V.

We have the following the logarithmic Sobolev inequality originally
due to Brezis-Gallouet [3], Brezis-Wainger[4] and Beale-Kato-Majda [1]
(see for some generalization [6], [14), [11], [10})).

LEMMA 2.2. Lets>n/p,p€ (1,00), and k =0,1,2,---. Then there
exist positive constants Cy = C\{n, k,p, s) and Cy = Cy(n, k,p, s) such
that

(2.1) I flleo < CL(1 4 LFN o log ™I fllwer + Ca))
for any f € W*2,

We prove this lemma in Appendix.

COROLLARY 2.3. Let s > n/p+ 1, p € (1,00), and k = 0,1,2,- -
Then there exist positive constants (] = (n k,p,s) and Cy =
Co(n, k, p, s) such that
(2.2) HVUHOO é CI (1 + nrot u”B;]ggM log({k'*-l)t-)(”u”wrs.p + 02))

for any n-dimensional vector function v € W*? with div u = 0.
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Corollary 2.3 is derived from the following equalities:
du =R;R x rot u  (Biot-Savart law):
16 % Riflloo =[I(Ril@j—1 + &5 + Bj.1)) * §5 * fll
where R = (R, Rs, -+ ,R;,- -, R,) denotes the Riesz transform.

3. Uniqueness

We prove uniqueness theorem similar to Yudovich {19]. Our main
result now reads:

THEOREM 3.1 (Uniqueness). Let u and it be generalized solutions for
the Euler equation. Suppose that one of the solutions satisfies rot u €
LY(0,T; By'%"), then w = 4 on [0,T]. Here B!%¢" is defined by

s * flloo
Fll porgit = SUp  —i———.
W e =30 10g™ (1] + ex)

In particular, there exists no more than one generalized solution for
the Euler equation with vorticity w € L'(0,T; BMO), since BMO C
BY ., C By%"

Proof of Theorem 3.1. Let u, % be two generalized solutions to the
Euler equations with same initial data and let w = u — 4. Now we
decompose the solution u into the three parts in the phase variables
such as

u(z) =y_y *u(z) + 3 ¢+ ulx)+ Y ¢;*u(x)
(3.1) S i>N
=w(z) + um(z) + un(z),

where ¢y_y = Ej <-n ®i- Then by the Hausdorff-Young inequality, the
low frequency part is estimated as
|(w - Vg, w)| =|(w - Vw, u)|

<llp-w » V{w @ w)ll2lull2

<OV nllzllwl5]

<C27"2[lwi3lullz-

(3.2)
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The second term is estimated as

|(w - Ve, w)|
< Jlwl3ll > 5 * Valloo

/<N
(3.3) SCIwlE D 11 x Vulls
iy
< CllwlpN 1og® (N + ex) sup (1og™((7] + ex)) 14 * Velo
3=

< Cllwl3N 10g™)(N + )| Vu] e

for any N > 1. The third term in the right hand side of (3.1) is simply
estimated by the Hausdorfl-Young inequality that

[(w - Vup, w)

= |('LU ' vauh”

< “W“2||VW“2“(Z(¢j—1 4 85+ $i) * ¢ * wlle
__1'>N

< Nl Vel 32 I{(=8)7""(¢5-
(34) - + 65+ dia)} * (=) x ublleo
< cuw||z||anz§2-jll¢, * (~8) ufoo
< CllwlaVeollalirot vl e D 27 (log*(3] + &)
< €27 Jwlel| Vot uuPN

- — fogh! -
B\'Xl.m

Now we consider the case |Jw||3 < C;' < 1. Gathering the estimates
(3.2)-(3.4) with (3.1) and choosing N properly large satisfying 2-V¥/2 ~
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w2, we see by u,w € L®(0,T; H}) (also c.f. (5.6) in Appendix) that

(3.5)
[(w - Vu,w)|

< Cllwli3llultz

+ CN 1og™ (N + e [w][3llrot ull g

+ C27 2 lwlisl| Vwllzllrot u] 5

< Cllwl3llull;

+ € {1+ log(u5%) Log*”log () + )} ot ull e

+ CllwlBIVwlafrot ull

< C(1+ ot ul e )woll3 {1+ log ™ (ol + ex) |
When ||w|j3 > C;}, we choose N = 1 and it follows

|(w - Va, w)] £ C(1+ frot af g [w]]:.

Hence in both cases, (3.5) holds.

Next we shall show the following estimate:
1
(3.6) ||w(t)l|§ < 4/ Ww - Vu,w)(r)|dr ae. on 0 <t < T
0

Since BY | € L™, we observe that

felioe <% * ulloo + Zl [l * wfloo
iz
<Cliull> + Z} I(—2)"2(¢j1 + &5 + bre1)} + &5 % (=AY Pu)] oo
iz
<Clluf2 + gQ_jHG’»‘j * (=) ull
izl
<Clullz + frot ull ;e > 277 (log (151 -+ ex))
<C(llull2 + [[rot ungwyggmjfl
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which implies
(3.7} w € L'(0,T; L™) N L™={0,T; HY).
By (3.7) and (i) in the definition of the generalized solution, we have
(3.8) u-Vue LY0,T; L?) and uw € LY&=0(0, T; L*).
On the other hand, % satisfies
(3.9) i-Vi e L2, T, LY and & € L®(0,T; L?),

since [1& - Viiaw/on-1y < illansnn| Viillz < Clahy? |V}, Then
using the standard mollifier argument, the regularities (3.8), (3.9) and
the definition of the generalized solution ((i), (ii} and (iii)) yield (3.6)
(c.f., [13]).

We then substitute (3.5) to (3.6) to have

lwiz<c [ )13 {1+ g I ()l + exen))
x (14 firot u(r}] . 10g:\-) ae for0<t<T.
Thus Lemma 2.1 (Osgood’s theorem) implies
w=0ae on[0,T)]
This proves Theorem 3.1. W]

4. Smoothness extension

We also have the following continuation theorem for smooth solutions.

THEOREM 4.1 (Continuation of smooth solutions). Let s > n/2 + 1
and u be a solution for the Euler equation in the class C([0,T); H*) N
CY([0,T); H*"). Suppose that

rot u € L'(0,7; Bgofgf'!),

then u can be continued to the solution in C([0, T"); H*)NC' ([0, T"); H*™1)
for some T > T
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Proof of Theorem 4.1. Now we prove Theorem 4.1 as Beale-Kato-
Majda [1]. It is proved by Kato-Lai [8] that for the given initial data
a € H* there exist T* > 0 and a unique solution » to (1.1} in the class
C([0,T*); H*yNnCH({0,T*); H*™'). Here the local existence time interval
T* can be estimated from below as follows

T > C/llal

Hence by the standard argument of continuation of local solutions, it
suffices to establish the following apriori estimate

H

(4.1) UiltlFT lu(t) e < 00.

It follows from the commutator estimate in given by Kato-Ponce [9,
Proposition 4.2] that

(4.2)  |lu®)lla < llafla exp (C/O IIVH(T)IILde) , 0<t<T,

where C = C(n, s). Substituting (2.2) to (4.2), we have
flae(t) iz + Co
<(llalla + C2)

exp (€ [ (14 1)l 108 (e e + Ca e

for all0 < t < T. Here w denotes rot u. Defining 2(t) = log™ (||u(t) [+
C5,), we obtain from the above estimate

z21(t) € 1 (0)+ CT + C/ﬂt ”(.(J(T)”B;’]‘ggk! 7(7)log®™ 2y (r)dr, 0<t<T.
Then Gronwall’s inequality yields

(4.3)  z(t) < {(2{0)+CT)exp (C’ -/Ot “w(T)”B;';'EH log™ z; (T)d‘l‘)

for all 0 < t < T with C = C(n,s). Again defining z:(t) = log" #(¢),

we obtain from the above estimate

t
2(t) < log™(1(0) + CT) + Cf Hwo (T ;=g 22(T) log =9 z9(7)dr,
0 0000
0<t<T.
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Repeating this procedure, we have

2411(9) < (08" (0) +CT) +C [ (o,

— log’
00,00

wdr, 0<t<T,

where z(t) = (log™)* ! log(]|u(t)||g» + C2). This implies {4.1). O

5. Appendix

Here we give the proof of the logarithmic Sobolev inequality, Lemma
2.2 (cf [14]).

Proof of Lemma 2.2. We decompose f into three parts such as

F@)=ponxf@)+ Y ¢ixflz)+ D¢ * f(x)

(5.1) lil<n >N
=fi(z) + fm(2) + ful2).

We first estimate f;(z) and fa{z). We easily show that

(5.2) @) < H[-wlty |l < C27YP Iy,

and

@] <D 1165 % Flloo

>N

<Gy 297)¢; % f,

>N
=0 2g; x [l (s> 5 > n/p)

>N
<G HIN || b

P

<2 fllwer (& =" = p/n).

Next, we consider f,,(2). Asin (3.3), we have

@) < D 115 % flloo

(5.3)

<N
- . ¢’ *f oo
(54) < 37 tog®(ij] + ey Sl
2 log®)([7] + )

SN log® (N + &)l £l ;g
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Gethering (5.2)-(5.4) with (5.1), we obtain
55) 1l < C27| fllws + ONTog® (N + ex)fl gt

where ¥ = min(,n/p,1/log2). Now we take

+ i
N = log" || fllw=» + Cy +1,
vlog 2

where [] denotes Gauss symbol and
C, = expexp---exp {(vlog 2)710&2/(71%2—1)}_
_V_J

k-times iteration
Then (5.5) becomes the desired estimate (2.1), since

(5.6) (log™ Y (az) < a(log™ Yz
for z > expexp---exp {a/@ V}ifa>1 !
—— et

(§ — 1)-times iteration
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