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ON THE BOUNDARY VALUE PROBLEMS
FOR LOADED DIFFERENTIAL EQUATIONS

MuvasHARKHAN T. DZHENALIEV

ABSTRACT. The equations prescribed in £2 C R" are called loaded,
if they contain some operations of the traces of desired solution on
manifolds (of dimension which is strongly less than n) from closure
1. These equations result from approximations of nonlinear equa-
tions by linear ones, in the problems of optimal control when the
control actions depends on a part of independent variables, in in-
vestigations of the inverse problems and so on. In present work we
study the nonlocal boundary value problems for first-order loaded
differential operator equations. Criterion of unique solvability is es-
tablished. We illustrate the obtained results by examples.

1. Introduction

Boundary value problems for the loaded equations arise and find a
wide applications in many applied problems (1}, {5], {7], [9]. However
they are not always stated correctly. The classical solution of Existence
Questions of local boundary value problems for loaded equations are
considered in work [1], [2] spectral problems — [3], generalized solvability
— [8), [8], etc. Theses equations find a wide applications in many applied
problems. In present work we study a nonlocal boundary value problems
for loaded differential operator equations of first order. Criterion of
unique solvability of considered problems is established. We illustrate
the obtained results by examples.
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2. The Statement of Problem and Main Results

Let {z €) © C R" be a cube with a 2r—ribs; P> be a linear manifold
of the smooth all over variables periodic complex-valued functions; H =
L), Let

LI

&
o,
, 8 £

l.
[ . o .
o =s5,1..5p", |a"|=a’1‘+...+n'§,» k=0,1,...,mm,

Afs)= ¥ e s
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be the polynomials with constant coefficients. Further we define the
linear differential operators Ax(—iD), & = 0,1,...,m, i = v—1, D% =
Dy ..Dg, D; = 8/0x;, asthe closure in H of the differential operations
primary-defined on P> such that

n
Ap(—iD)exp {is -z} = Ax(s)exp{is-z}, sz = Z sizj, k=01, ... m.
=1
The operators Ag, & =0,1,...,m, will be called by II-operators [4].
We denote

A(S) = Z Ak(s)a

B(s) = 2mA(S) + (- {1+ Y Als)te],
k=1

where p € C (the complex number).

Let S = {s = {s;}}_ls; = 0, £1,£2,...,Vj}, S"={s]s € S, A(s) =
0}, & = degree {Ax(s)}, k=0,1,...,m, | = max{l, k=1,..,m}, H =
L*0,2m; H), and

|Ju’| < +00, lk < lD: k= 11 ey TTE,

(2.1) degree{ B(s)} = degree{ A(s)} =1, B(s)|s=0 # 0,

0 <t <... <ty < 2, {t}1, are a fixed points.
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We consider the boundary value problem with conditions (2.1):
(2.2)

Liw= (D} + Ag(—iD))ult) + 3 A(—iD)u(ty) = £(2) in (0,2n),
k=1
TLu = pu(0) — u(27) = @.
The conditions {2.1) rule out the cases yu = oo that correspond to
the Cauchy problem [7].

DEFINITION 2.1. The function u(x,t) € H is strong solution of the
problem (2.2) if there is a sequence of the functions {u;(z,?)}%2, C
CY0, 2m; P*™) such that u;{z,t) — u(z,t), Liy; = f; — fin H, and
F#uj — P in H.

The following theorem is established.

THECREM 2.1. The problem (2.2) for Vf € H and ¢ € H admits a
unique strong solution in H iff

(2.3) B(s)#0V¥s e S°,

(2.4) C(s) = u—exp{—Ap(s)2n} #0 Vse S\ S,

D(s) =1+ [4g(s)] " D Ax(s){1
(2.5) Py
—[CN ™ (p— 1) exp{-Als)te}} #0 VseS\S"
For 4 =1 we obtain from Theorem 2.1

COROLLARY 2.1. The problem (2.2) forVf € H and ¢ € H admits
a unique strong solution in H iff

(2.6) A(s)+ Ao(s) #0 Vs € S,
(2.7) Ag(s) #ig¥s € S\ S, g=41,+2, ...

REMARK 2.1. The condition (2.6) follows from (2.3) and (2.5), the
condition (2.7) follows from (2.4).
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3. Auxiliary results

We shall find a solution of the problem (2.2) by Fourier method:

(3.1) u= Zus(t)eis'z, f= Zfs(t)eis"”.

) SES

For the coefficients of the series (3.1) we have

m%m+§Ammﬂg=mﬂmmg@

(3.2)
”us(O) - us(Qﬂ') =@ §E SO;
(D} + Ao(s))us(t) + 3 Ax(s)us(te) = fult) in (0, 27),
(3.3) =i ’

pus(0) — u,(27) = 5, s € S\ SY;

According to the ([4], p.118) we have:

LEMMA 3.1. Boundary value problem (2.2) has a unique strong solu-
tion in the space H for Vf € H,Vyp € H iff each of the problems (3.2},
(3.3) admit a unique solution and there is a constant C > 0 that doesn’t
depend on s and such that

(3.4) lus() | ao.0my < CUELE Loo.2m + psT) Vs €S-

By the Lemma 3.1 Theorem 2.1 will follow immediately from the
following Lemmas.

LEMMA 3.2. For all s € 8° and each f, € C(0,2r) the Problem (3.2)
has a unique u, € C'(0,27) [ C[0, 2] and the estimate (3.4) is true iff
the condition (2.3) is held.

LEMMA 3.3. For all s € S\ 8% and each f, € C(0,2r) the Problem
(3.3) has a unique u, € C'(0,27)(C[0,2n]| and the estimate (3.4) is
true iff the conditions (2.4) and (2.5) are held.



On the boundary value problems for loaded differential equations 1035

Proof of the Lernma 3.2. At the conditions (2.3) only the Problem (3.2)
has a unique solution

(3.5)

us(t) = ffs(f) dr + [2rA(s)] ! [1 + Z Ar(s)(ty — t)]
o k=1

. [/ﬂfS(T)dT + lps] — [A(s)™ iAk(s)jfs(T) dr, if p=1,
b k=1 J

(36)
u(t) = f fs(T)dT—[B(S)]_’[t(u—1)+2ﬂ']iAk(s) / f(r)dr
0 k=1 0
+{(s =17 — (B AW [t + (4 — 1)72n] }
s+ [ folr)dr|, if p#1,
o Jrtna]

where A(s), B(s) are defined in section 2.
These representations (3.5), (3.6) are obtained by the following way.
Firstly we integrate the equation (3.2} and obtain

BN )= w0+ [ -t Adsun).
0 k=1
Secondly we have for ¢ = 27 from (3.7)
2 m
(38) (1= Duy(0) = s + f Foe)dr =20y Ausyus(te)
0 k=1

Further we have for ¢t = ¢,k = 1,...,m, from (3.7)
(3.9)

{1 + zm:/-lk(s)tk]
k=1

Z;Ak(s)us(tk)} = A0 + 30 4(s) [ )
k=1 k=1 0
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Specifically, from here we have for p =1

(310) Y As)u(te) = @)1 |+ / f(r)dr
k=1 J

u,(0) = [27A(s) [ +2Ak J
s+ [ filr)dr| — [Als)] ™ ) Ax(s) .fs(‘f)d”f
2 ([ T g k h/.

for g £ 1 correspondingly

(3.11)

m

Z (shus(ts) = [B(s)] 7' Als lsos /fs(T

(3.12)
LB -1 As) / fu(r)dr,
k=1 0
4(0) = (= 1)7{1 — 2n[B(s)| " A(s)} [cps + / fs(T)dT}
(3.13) 0

— 2n[B(s)]” : /fs

Thus from equalities (3.10), (3.11), (3.12), (3.13) and (3.7) we obtain
the representations (3.5), (3.6) of unique solution of problem (3.2).
According to (2.1) there is the constant C such that

|B(s)"" |[Ax(s)| < C forallk =1, ...,m, and s € S°.

Here the constant C is independent on k,s. For 4 = 1 we note this
condition is identical to the following

A(s)| "' JAx(s)| < C forall k =1,...,m, and s € S°.
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The desired estimate (3.4) follows from here and (3.5). This finishes
the proof of the Lemma 3.2. |

Proof of the Lemma 3.3. At the conditions (2.4}, (2.5) only the Problem
(3.3) has a unique solution

us(t) = / Golt, T, (7)dr + [C()] s cxp {—Ao(s)t}

0
(3.14) .

m 2r
— D)t ] Gs(t, 7)dr Y Ax(s) f G, (te, T) fo(7)dr,
k=1 0

0
where G,(t, ) is the Green function
(3.15)

p[C(s)] exp {—Ag(s)(t — 7)} if 0<T<t<?2m,
G.(t,7) =
“r [C(s)] P exp{—Ao(s)@n+t —7)} if 0<t <7< 2m,

and C(s), D(s) are defined in (2.4), (2.5).
We note that the following equality

2
(3.16) /Gs(t,f)d'r = [Ao(s)] {1 = [C() 7 (1 — 1) exp {—Ao(s)t}}

is hold.

Considering (3.15) the representation (3.14) is obtained similarly to
Lemma 3.2.

Tt only remains to establish the estimates (3.4) for the solutions (3.14).

The first item of the solution {3.14) estimate similar to ([4], p.120-
121)

n

(3.17) / Gt 7)fu(T)dr

1]

< Ky Hfs(T)uLg(D,Ew) )
L2(U,2‘ﬂ')

where the constant K doesn’t depend on s.

By the equality (3.16) the estimate of the third item of the solution
(3.14) follows from the inequalities
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o because of (3.17) we obtain

27

[ Gultin TV o) | < Ko 1)l 1s0m) V5 € S\SY, k=1,..,m;
1]

o because of D(s) # 0 (2.5) there is the constant 4 > 0 such that
|D(s}7! €67 < +oo Vs € S\ 8%

e by definition C(s) (2.4) we have
|1 = [C(s)] " — 1 exp {—Ao(s)t}| < K3 ¥s € S\ S°, t € (0, 2n];

e because of (2.1) and (2.3) we have
| Ao(8) 7! | Ax(5)| < Ks Vs € S\S° k=1,..,m;

where the constants 4, Ky, K3 and K, don’t depend on s.
By (2.3) the second item of the solution (3.14) yields a estimate

[C(s)] 7" exp {—Ao(s)t}ipe| < Kslos| Vs €S\ S, t € (0,2n].

Thus the desired estimates (3.4) follows by the established inequali-

ties.
This finishes the proof of the Lemma 3.3.

4. Proof of the Theorem 2.1

To finish the proof of the Theorem 2.1 it is necessary to prove the
closure of our problem operator (2.2) in the space #, that is to check

the correctness of following proposition ([10], p.209).

PROPOSITION 4.1. The operator T+ E is closed if T is closed and E

is bounded in the D(E), D(T) C D(E).

Here D(X) is the domain of a operator X.
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Let I < lp/2. Then we define T' as the operator L, of problem (2.2)
without item Y i Ap(—iD)u(tx), and E =31, Ag(—iD)u(ty). By the
trace theorem ([11], p.33) we obtain

D(1)={ vive L2 (0.2mD{40)), Dlver pec (0.2n)DiA0). Hlyy2 ) SDIE),
where [X,Y), is the interpolating space {{11], p.23), X and Y are the

Hilbert spaces, the embedding X C Y is dense and continuous, # € (0, 1).
Now let lp/2 < I < I, I = degree{ A;(s)}, where k = arg { max{l, k =

1, ..., m}} Then we define T and E as the operators Tu = Dju +
Ai(—iD)u(ty), Bu = Ap(—iDyu+ 3. Ax(—iD)u(ts).
k=1 k4K

By the trace theorem ([11], p.35-36, 55-56) we obtain

D(T) = {v|v € Ly(0,2n; D(AzA;)), Djv € H}
C {C([0,27]; D(Ag)) N Ly(0, 2m; D(A0)) } © D(E).

It only remains to apply Proposition 4.1. Proof of Theorem 2.1 is
completed.

5. Examples
Let @ = {z,tj0 < z,t < 27}

(i). For the boundary value problem:

(5.1) (D = D)u+ ) (0w + BiDiJulz, te) = f, {z,1} €Q,

k=1
{5.2) Diu(0,t) = Diu(2m, t), j =0,1; pu(z,0) = u(z, 27),

the following corollaries take place:
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COROLLARY 5.1. The problem (5.1)-(5.2) for Vf € Ly(Q) admits a
unique strong solution u € Ly(Q} iff

(5.3) S o2+ (p -t +p - 1#0
k=1
(5.4) p— exp{—s*2m} # 0 Vs € S\ {0},
'Qmw 80 {1 — [u — exp {—s227x}] !
(55) 1+s ;(HL Be){1 — [u —exp {-s"2n}]
(u—1)exp{—s*ti}} #0 Vs € S\ {0}.

COROLLARY 5.2. Let = 1. Then the problem (5.1)—(5.2) for Vf €
L,(Q) admits a unique strong solution u € Ly(Q) iff

m

(5.6) D (ox+is- B+ #0Vs€S.

k=1

COROLLARY 5.3. Let ¢ = land 8y = 0,k = 1,...,m. Then the
problem (5.1)—(5.2) for Vf € Ly(QQ) admits a unique strong solution

m 1/2
(5.7) (— > ak) ¢ S.
k=1

REMARK 5.1. For 2 = 1 the correctness of the boundary value prob-
lem (5.1)—(5.2) doesn’t depend on the points £;. This follows from corol-
laries 5.2, 5.3.

{ii). Let a = const. For the boundary value problem:

68) (D -Di+au+Yawlan) - f {rt)eQ

k=1
(5.9) Diu(0,t) = Diu(2m,t), 5 =0,1,2; pu(z,0) = u(z, 27),

the following corollaries take place:
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COROLLARY 5.4. The problem (5.8)-(5.9) for Vf € Ly(Q) admits a
unique strong solution u € Ly(Q) iff

(5.10) 2y g+ (- DI+ out] #0
k=1 k=1
(5.11) p # exp{—2ma},

i3+ a ma — [~ exp{—2ma}]"!
(512) is® 4 +§ s {1 [ p{—2ma}]

(p—Dexp{—(is’ +a)x}} #0Vs €S \ SP.

COROLLARY 5.5. Leta # 0, it = 1. Then the problem (5.8)-(5.9) for
Yf € Ly(Q) admits a unique strong solution u € Lo(Q) iff

1/3
{(5.13) sinh () +# 0, \/_7 ¢ S, wherey= (a + Zak) .

k=1

These corollaries follow from Theorem 2.1 and Corollary 2.1. The
conditions (5.3)—(5.12) of the corollaries 5.1--5.4 follow from (2.3)(2.5)
and (2.6)—(2.7) correspondingly.
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