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(The Relationship between Election and Consensus in
Asynchronous Distributed System)
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Abstract This paper discusses the relationship between the Election problem and the Consensus
problem In asynchronous distributed systems with unreliable failure detectors. We first show that
Election is harder to solve than Consensus. Chandra and Toueg have stated in [8] that Consensus is
solvable in asynchronous systems with unreliable failure detectors. But, in contrast to the Consensus
problem, the Election problem is impossible to solve with unreliable failure detectors even with a single
crash failure. This means that the Election problem is harder than the Consensus problem. More
precisely, the weakest failure detector that is needed o solve this problem is a Perfect Failure Detector,
which is strictly stronger than the weakest failure detector that is needed to solve Consensus. We use
a reduction protocol to show that the Election problem is harder than the Consensus problem.

' in the research community [2,3,4,56].
. Introduction

967

One reason

for this wide interest is that many distributed

To elect a Leader (or Coordinator) in a distri-
buted

solved among a set of participating processes. This

system, an agreement problem must be

problem, called the Election problem, requires the
participants to agree on only one leader in the

system [1]. The problem has heen widely studied
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protocols need an election protocol.

The Election problem is described as follows. At
any time, there is at most one process that
considers itself a leader and all other processes
consider it as to be their only leader. If there is no
leader, a leader is eventually elected. o

Consensus and Election are similar problems in
that they are both agreement problems. The
so—called FLP impossibility result, which states that
it is impossible to solve any non-trivial agreement

in an asynchronous system even with a single
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crash failure, applies to both problems [7]. The
starting point of this paper is the fundamental
result of Chandra and Toueg [8], which states that
Consensus is solvable in asynchronous systems
with unreliable failure detectors.

whether the

An interesting question is then

Election problem can also be solved in

asynchronous systems with unreliable failure
detectors. The answer to this question is No, and
this is not surprising because the Election problem
has been considered harder than Consensus [9].
However, in contrast to initial intuition, the reason
Consensus is not its

Election is harder than

Liveness condition. The difficulty in solving
Election is actually its Safety condition (all the
nodes connected the system never disagree on the
leader when the nodes are in a state of normal
operation). This  condition  requires  precise
knowledge about failures which unareliable failure
detectors cannot provide.

The rest of the paper is organized as follows.
Section II describes motivations and the related
works., In Section III we describe our system
model. In Section IV we define Leader Election and
show that it is harder than Consensus. Finally,
Section V summarizes the main contributions of

this paper and discusses related and future work.

2. Motivations and Related Works

In recent years, several paradigms have been
identified to simplify the design of fault-tolerant
distributed applications in a conventional static
system. Election is among the most noticeable,
particularly since it is closely related to group
communication, which (among other uses) provides
a powerful basis for implementing active repli-
cations.

It was shown in [7] that the Consensus problem
cannot be solved in an asynchronous system if
even a single crash failure can occur. The intuition
behind this widely cited result is that in an

asynchronous system, it is impossible for a process

to distinguish between another process that has’

crashed and one that is merely very slow. The

consequences of this result have been enormous,
because most real distributed systems today can be
characterized as asynchronous, and Consensus is an
important problem to be solved if the system is to
tolerate failures.

As a result, the Consensus problem has frequ-
ently been used as a yardstick of computability in
distributed
That means that if any problem is harder than

asynchronous  fault—tolerant systems.
Consensus, it also cannot be solved in asynchro-
nous systems.

The asynchronous model of computation is
especially popular in practice because unpredictable
workloads are sources of asynchrony in many real
systems. Therefore rendering any  synchrony
assumption is valid only probabilistically. Thus, the
impossibility of achieving Consensus reveals a
serious limitation of this model for fault-tolerant
applications such as the Election problem. Because
fundamental

Consensus is such a problem,

researchers have investigated various ways of
circumventing the impossibility.

Actually, the main difficulty in solving such a
problem in presence of process crashes lies in the
detection of crashes. As a way of getting around
the impossibility of Consensus, Chandra and Toug
extended the asynchronous model of computation
with unreliable failure detectors and showed that
the Consensus problem is solvable even with
unreliable failure detectors [10].

If the Election

problem is also solvable in

asynchronous systems with unreliable failure
detectors, it has an important consequence since the
failure detection of a process is unreliable in real
systems. To confirm whether Election is solvable in
unreliable  failure

asynchronous  systems  with

detectors, we compare Election with Consensus
using a reduction protocol.

We are not the first to show that there are
problems harder than Consensus. The first such
result that we are aware of is [11] in which the
authors show that Non-Blocking Atomic
Commitment (NB-AC) cannot be implemented with

the weakest failure detector that can implement



Consensus. This problem arises when transactions
a distributed
termination of transactions should be coordinated

update data in system and the
among all participants if data consistency is to be
preserved even in the presence of failures [12]. It
resembles the Election problem in that NB-AC is
harder than Consensus.

To solve the NB-AC problem with an unreliable
failure detector, they propose Non-Blocking Weak
Atomic Commitment (NB-WAC) protocol and show
that a failure dctector weaker than a Perfect
Failure Detector is strong enough to solve Non-
Blocking Weak Atomic Commitment (NB-WAC).
Hence, NB-AC appears to be harder than Con-

sensus, but NB-WAC is easier than Election.

3. Model and Definitions

with
failure detection is the one described in [10]. In the

Our model of asynchronous computation
following, we only recall some informal definitions
and results that are needed in this paper. ‘

3.1 Processes

We consider a distributed system composed of a
finite set of processes Q={py,p...0a} completely
connected through a set of channels. Communi-
cation is by message passing, asynchronous and
reliable. Processes fail by crashing; Byzantine
failures are not considered.

Asynchrony means that there is no bound on
communication delays or process relative speeds. A
reliable channel ensures that a message, sent by a
process pi to a process pj;, is eventually received by
p; if pi and p; are correct (i.e. do not crash).

To simplify the presentation of the model, it is
convenient to assume the existence of a discrete
global clock. This is merely a fictional device inac-
cessible to processes. The range of clock .ticks is
the set of natural numbers. A history of a process

- 0 12
pEQ is a sequence of events ki = e " e e,

k K
e, where e denotes an events of process p;

occured at time k. Histories of correct processes
are infinite. If not infinite, the process history of p;

. . k
terminates with the event «crash; (process pr
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crashes at time k). Processes can fail at any time,
and we use f to denote the number of processes
that may crash. We consider systems where at
least one process is correct (e, f< [Q1 ).

A failure detector is a distributed oracle which
gives hints on failed processes. We consider
algorithms that use failure detectors. An algorithm
defines a set of runs, and a run of algorithm A
using a failure detector D is a tuple ! = < F, H,
I, S, T>: I is an initial configuration of A; S is an
infinite sequence of events of A (made of process
histories); T is a list of increasing time values
indicating when each- event in S has occurred; F is
that denotes the set F(f) of

processes that have crashed at any time £ H is a

failure pattern
failure detector history, which gives each process p
and at any time ¢, a (possibly false ) view H(p,t)
H(p,t) denotes a set of
and g€H(p,t)
suspects process g at time ¢

3.2 Failure detector classes

Failure detectors are distributed oracles related to

of the failure pattern:

processes, means that process p

the detection of failures. A failure detector of a
given class is a device that gives hints on a set of
processes that it suspects to have crashed.

The Oracle notion has first been introduced as a
language whose words can be recognized in one
step from a particular state of a Turing machine
[13,14]. The main characteristic of such oracles is
to hide a sequence of computation steps in a single
step (they may also hide an uncomputable func-—
tion). They have been used to provide a hierarchy
of problems. Hence the Oracle notation is related to
the detection of failures. These oracles do not
change the pattern of failures that affect the
execution in which they are used. The main
characteristic of such oracles is not related to the
number of computation steps they hide, but to the
guess they provide about failures.

Failure detectors are abstractly characterized: by
completeness and accuracy properties [10]. Com-
pleteness characterizes the degree to which crashed
processes are permanently suspected by correct

processes. Accuracy restricts the false suspicions
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that a process can make.

Two completeness properties have been identified.
Strong Completeness, i.e., there is a time after
which every process that crashes is permanently
and Weak

Completeness, ie., there is a time after which

suspected by every correct process,

every process that crashes is permanently sus-—
pected by some correct process.

Four accuracy properties have been identified.
Strong Accuracy, i.e., no process is never suspected
before it crashes. Weak Accuracy, ie., some correct
process is never suspected. FEventual Strong
Accuracy (OStrong), ie., there is a time after
which correct processes are not suspected by any
correct process; and Eventual Weak Accuracy (&
Strong), i.e., there is a time after which some
correct process is never suspected by any correct
process. A failure detector class is a set of failure
detectors characterized by the same completeness
and the same accuracy properties (Figure 1).

For example, the failure detector class P, called
Perfect Failure Detector, is the set of failure
detectors characterized by Strong Completeness and
Strong Accuracy. Failure detectors characterized by
Strong Accuracy are reliable: no false suspicions

are made. Otherwise, they are unreliable

Accuracy
Completeness
Strong | Weak |<{Strong| OWeak
Strong P S P &S
Weak Q w R oW

Fig. 1 Failure detector classes

For example, failure detectors of S, called Strong
Failure Detector, are unreliable, whereas the failure
detectors of P are reliable.

3.3 Reducibility and Transformation

The notation of problem reduction first has been
introduced in the problem complexity theory [14],
and in the formal language theory [13]. It has been
also used in the distributed computing [15,16]. We
consider the following definition of problem reduc—

tion.

An algorithm A solves a problem B if every run
of A satisfies the specification of B. A problem B
is said to be solvable with a class C if there is an
algorithm which solves B using any failure detector
of C. A problem B; is said to be reducible to a
problem B: with class C, if any algorithm that
solves Bz with C can be transformed to solve B;
with C. If B; is not reducible to By, we say that
B; is harder than B-.

A failure detector class C; is said to be stronger
than a class C; (written Ci=C»), if there is an
algorithm which, using any failure detector of Ci,
can emulate a failure detector of C. Hence if C is
stronger than C» and a problem B is solvable with
Cs, then B is solvable with C;. The following
relations are obvious: P=Q, P=3, OP=Q, OP2O
S, s=2wW, OS=OW, Q=W, and OQ=OW. As it
has been shown that any {failure detector with
Weak Completeness can be transformed into a
failure detector with Strong Completeness [10], we
also have the following relations: Q=P, OQz=OP,
W=2S and OW=CS. Classes S and OP  are
incomparable. ‘

3.4 Consensus

In the Consensus problem (or simply Consensus),
every participant proposes an input value, and
correct participant must eventually decide on some
common output value [17]. Consensus is specified
by the following conditions.

- Agreement: no two correct participant decide
different values;

- Uniform-Validity: if a participant decides v,
then v must have been proposed by some parti-
cipant;

- Termination: every correct participant even-
tually decide.

Chandra and Toueg have stated that Consensus
is solvable with OP or S [10].

4. Election is harder than Consensus

In this section, we. show that the Election
problem is not solvable in asynchronous systems

with unreliable failure detectors. This impossibility
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result holds even with the assumption that at most
one process may crash. Hence Election is harder
than Consensus.

4.1 The Election Problem

Election is an important problem to solve for the
construction of fault tolerant systems. It is closely
related to the primary-backup approach (since
choosing a primary replica is like electing a leader),
an efficient form of passive replication. It is also
closely related to group communication [18], which
(among other uses) provides a powerful basis for
implementing active replications.

The proof of the impossibility of Consensus in [7]
assumes that it is impossible for a process to
determine whether another process has crashed, or
is just very slow. This assumption is widely cited
as the reason for the impossibility result. There are
other problems that cannot be solved in aS)TI}Clll‘O*
noué systems with crash failures for the same
intuitive reason that Consensus cannot be solved.
Some of these problems can be solved with a weak
failure  detector; however, some cannot. In
particular, the Election problem cannot be solved if
a crashed process cannot be distinguished from a
slow process.

The Election

following two properties.

Problem is specified by the

- Safety: All processes connected the system
never disagree on a leader when the nodes are in
a state of normal operation.

- Liveness: All processes should eventually pro—
gress to be in a state in which all processes con-
nected to the system agree to the only one leader.

An election protocol is a protocol that generates
runs that satisfies the Election specification.

4.2 Impossibility of solving Election Problem

Though $P or S are sufficient to solve Con-
sensus, it is not sufficient to solve Election.
Therefore the Election problem is strictly harder
than the Consensus problem since even when
assuming a single crash, unreliable failure detectors
are not strong enough to solve election. In this
Strong  Accuracy is

section, we show that

necessary for solving Election, and it is sufficient

Z BAs st EAY #AA 971

for solving Election.

Theorem 1 If f > 0, Election can not be solved
with either OP or S.

PROOF. Consider a failure detector D of OP.
We assume for a contradiction that there exists a
deterministic  election protocol E that can be
combined with a failure detector D such that E +
D is also an election protocol. Consider an
algorithm A combined with £ + D which solves
Election and a run R = < F, Hp, I, S, T > of A.
We assume that only two processes P; and P; are
correct and all messages from them is delayed until
after ¢ in 1. ‘ ;

Consider that P; is a leader at time (R, k). At
time (7, k1) where (k + ) > k; > k, the process.
P; falsely suspects other process P; in some run.
At time (2, k») where k» > k;, P, considers itself a
leader by delaying the receipt of all messages sent
by P:i until k3, where (k + t) > k3 > ki Thus in
(R, k1) bhoth P; and P; consider themselves the
leader, violating the assumption that A is an
election protocol. :

But after a time ¢, all the processes except P
and P; are suspected. Hence there is a time after
which every process that crashes is permanently
suspected by every correct process. So Hp satisﬁés
Strong Completeness. Consider Accuracy. After a
time ¢ P, and, P; are never suspected in [lp.
Hence Hp satisfies Eventual Strong Accuracy. This
is a contradiction. ‘ ‘

Theorem 2 A weakest failure detector to solve
Election is the Perfect Failure Detector. .

PROOF: It is shown in [9] that a failure
detector satisfying Strong Accuracy and Strong
Completeness can he used to implement a Perfect
Failure Detector. Strong Accuracy let processes
never suspect a correct process: suspicions. are
never false. Every correct process always detects a
leader failure only when the leader crashes using a
Perfect Tailure Detector. After an election is
started, the problem of electing only one process as
a leader is a kind of consensus problem; hence this
problem is easily solved with a Strong Failure

Detector that is less strong than Perfect Failure



972 AR AE =T R A =E " o] 2 A 27 A A 12 EQ00012)

detectors. That means that every correct process
eventually gets into the state in which it considers
only one process to be a leader. Therefore a
Perfect Failure Detector is the weakest [failure

detector that is sufficient to solve Election.

5. Concluding Remarks

The importance of this paper is in extending the
applicability field of the results, which Chandra and
Toueg have studied on solving problems, into the
(with
augmented

Election problem in asynchronous system
crash failures and reliable channels)
with unreliable failure detectors.

- More specifically, what is the weakest failure
detector in the asynchronous system? As an
answer to this question, we showed that Perfect
failure Detector P is the weakest failure detector to
solve the Election problem in asynchronous
systems. Though OFP or S are sufficient to solve
Consensus, we showed that they are not sufficient
to solve Election. Therefore the Election problem is
strictly harder than the Consensus problem even
when assuming a single crash.

Determining that a problem Pbi is harder than a
problem Phy has a very important practical con-—
sequence, namely, the cost of solving Pbi cannot be
less than that of solving Pby. That means that the
cost of solving Election cannot be less than that of
solving Consensus.

The applicability of these results to problems
other than Consensus has been discussed in [§,
17,18,19,20]. To our knowledge, it is however the
first time that Election problems are discussed in
asynchronous unreliable  failure
detectors. We

harder than Election as well. One can define failure

systems  with
believe that there are problems

detectors that are stronger than a Perfect Failure
Detector. For example,” we can define a failure
detector that is not only perfect but also guarantees
that a failure of a process is detected only after all
messages that it has sent have been received by
This failure detector is

the detecting process.

requirted by some problems, including the non-

blocking version of the asynchronous Primary-
Backup problem [12].
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