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Identifying Multiple Leverage Points and Outliers
in Multivariate Linear Models
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Abstract

This paper focuses on the problem of detecting multiple leverage points and outliers
in multivariate linear models. It is well known that the identification of these points is
affected by masking and swamping effects. To identify them, Rousseeuw(1985) used
robust estimators of MVE(Minimum Volume Ellipsoids), which have the breakdown
point of 509 approximately. And Rousseeuw and van Zomeren(1990) suggested the
robust distance based on MVE, however, of which the computation is extremely
difficult when the number of observations = is large. In this study, we propose a
new algorithm to reduce the computational difficulty of MVE. The proposed method is
powerful in identifying multiple leverage points and outliers and also effective in
reducing the computational difficulty of MVE.

Keywords : leverage points, Mahalanobis distance, masking effect, MVE(minimum volume
ellipsoids), outliers, robust distance, swamping effect

1. Introduction

We consider the problem of identifying and testing multiple leverage points and outliers in
linear models. Linear models are commonly used to analyze data on many fields of study and
these data often contain leverage points and outliers. In general, leverage points are located
far away from the bulk of the explanatory variables and outliers do not follow the pattern of
the majority of the data.

Classical methods of leverage points and outliers detection are powerful when some data set
contain only a leverage point or an outlier. But it would be much more difficult to detect
multiple leverage points and outliers in multivariate linear models. The identification of
multiple leverage points and outliers can be perplexing because of masking and swamping
effects. The masking effect occurs when a leverage point or an outlier obscures the existence
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of another, while the swamping effect occurs when non-leverage points or non-outliers are
wrongly identified as the leverage points or outliers. It is difficult to control masking and
swamping effects when we use non-robust estimators. To reduce the masking and swamping
effects, several robust methods have been proposed in recent years.

We consider the standard linear model

y=XB+ €, (1)

where y=(y1,y2,...,y,,)T is an #nxX1 vector of wvalues of the response variable,
B =(,80,,81,...,Bp)T is a (p+1) %1 vector of unknown parameters, X=(x7, x5, -, 207
is anznx(p+1) matrix of explanatory variables with rank p+1{#%, and
E=(61,€2,"’,En)T is an nx]1 vector of independent normal random variables with
mean ( and unknown variance 021,,. We can estimate the unknown parameter B8 as

the ordinary least squares(OLS) estimator b = (XTX)—IXTy. So the vector of OLS
residuals can be written as

e=y—Xb=(1,—P)y, (2)

where P = (p;) = X(XTX) 'XT Then the residual sum of squares is SSE=e’e

and the estimate of ¢® is ele/(n—p—1).

Consider the partition xF=(1,27) and let DAM,V), (i=1,2,-,n) be the
measure of the distance between the observation z; and a location estimator M with
a dispersion measure V. Then Mahalanobis distance, a classical method, can be expressed

by the arithmetic mean of explanatory variables Z and the usual sample covariance

matrix S(Z).

MD;= D(Z,S(2)=V (2:i— D'S(2) 2,—2) i=1,2,~,n. 3)

With the significance level @, the cutoff value of MD; would be V x2 »1—a/2- SO the values
of MD; that exceed the cutoff values may indicate that the corresponding observations are
leverage points. However, leverage points do not necessarily have large values for MD,

because of the masking effect and not all observations with large MD; values are necessarily
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leverage points, because of the swamping effect. This is due to the fact that Z and S(2)

are not robust. Therefore, it seems necessary to replace Z and S(Z) in (3) by robust
estimators respectively.

In the usual multiple linear regression model, we often use the diagonal elements of the hat
matrix P=X(X'X) 'X’ as diagnostic measure to identify leverage points. Hoaglin and
Welsch(1978) pointed out the cutoff value of p; is 2(p+1)/n. The method with diagonal
element p; also has the problem of masking and swamping effects as well as the
Mahalanobis distance. This can be explained by realizing that there exists a relation between
p; and MD; by

(MD)* 1 ._
b= n—1 + " 2—1,2, (N (4)
Rousseeuw(1985) suggested the minimum volume ellipsoid(MVE) that covers at least haif
the observations to construct robust estimators. The MVE is defined as the pair ( M, V(Z2)),
where M is a p vector and W(Z) is a positive semidefinite pXp matrix such that the

determinant V(Z) is minimized subject to
#{6(2i—= MV N z2;— < s3=h, i=1,2,,n (5)

where £ is an integer part of (n+ p+1)/2. The advantage of the MVE estimator is that the
breakdown point is as high as 50% approximately. However, the MVE estimates are
computationally very expensive. For example, if we have an n#X(p+1) data matrix X, then
we need to compute the volumes of n!/k!(n— h)! ellipsoids to select the MVE. So it is

rarely possible to compute the MVE if # is large.
To reduce the computational difficulty of the MVE, Rousseeuw and Leroy(1987) suggested
the resampling algorithm approximating computation of the MVE. The resampling algorithm

draws several subsamples each of size p+1 and then for each subsample j, we compute

DAM;, (2))=\ (zi=M)TV(D; (x;,— M), i=1,2,-n )

where M, and V(Z); denote the mean and covariance matrix for the j th subsample. Let
m; be the 100(%4/n)th percentile of the # values in equation (6). The volume of an ellipsoid
based on M;, V(Z); and containing % observations is proportional to {m’det( V(Z) ,-)}(”2) CIf

we let £ be the subsample for which midef V(Z),) is minimum, then the ellipsoid based on
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subsample % can be used as an approximation of the MVE containing /% observations.
By using this resampling algorithm, Rousseeuw and van Zomeren(1990) suggested the robust
distances

RD;'=D1(M;,C,'V(Z),')=\/(Z,-— M) (e, V(2)) Nz;— M), i=12,n (7

to identify leverage points in the data set Z with the cutoff value Xi,l—a/z- A correction

factor Cj={1+15/ (n‘D)}zmj/Zi.o,so is used to achieve consistency at multivariate normal
distributions.
RD; is proved to be robust in the problems of masking and swamping effects, but has

some difficulties in practice. Hadi(1992) pointed out the following three problems.

First, a decision has to be made on the number of subsamples.

Second, when Rousseeuw and van Zomeren(1990) calculate the RD; of equation (7), they
had the assumption of that X is a general position. (X is said to be in the general
position when every subsample of size p+ 1 has rank p).

Third, even if all subsamples of size p+1 have rank p, it may happen that the

covariance matrices for some subsamples have nearly zero determinants and hence
the corresponding ellipsoids have nearly zero volumes.

Although Rousseeuw and van Zomeren’'s method using the resampling algorithm reduced the

computational complexity from ,C, to ,C,4+;, the computation is still very expense. For

example, if a consideration is given for 75 X4 explanatory matrix, we need 1,215,450
computations of the MVE,

In this paper, we propose a procedure for reducing the numbers of calculation of the MVE
by using the residual method which is suggested by Yoo and Kim(1996). The procedure is
easy to compute and have good powers in identifying good and bad leverage points.

2. Proposed procedures

Let py is the largest element of diagonal matrix of P. MAD means the median absolute
deviation, e, and s, reveal the residual and standard deviation of the #Ath observation

respectively.

The Suggested Algorithm
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<Step 1> Find a clean subset of M, initially of size /% which is an integer part of
(n+p+1)/2.
(D Calculate the regression coefficients & and residuals e by OLS.

@ Select the largest diagonal element of p, of hat matrix P.

@ Calculate the MAD of residuals by using Yoo and Kim’s model by simulating e, in
the interval of (e,—3sg ep+ 3sp).

@ Find a minimum MAD model and calculate the corresponding residual ey .

® Sort the |e, — median(e,’)| in ascending order and select the first % data.

<Step 2> Find the subsample j of size p+1 which m’det( V(Z);) is minimum under the

clean subset M.

<Step 3> Calculate the following SRD; based on the selected subset of <Step 2>.

SRD;=D{M;, c;V(2) )=V (zi= M) (c; (D)) Nz;~ M) i=i2,n @)

where ¢;= Cpmil 105 and c,,={1+15/(n—p)}°

<Step 4> Plot the standardized LS(Least Squares) residuals with the Mahalanobis distance
MD,'s, the standardized LMS(Least Median of Squares) residuals with the robust

distance RD,’'s, the standardized LS residuals with the diagonal elements of hat
matrix p; and the standardized LMS residuals with the suggested robust distance

SRD,"S.

The theoretical background of <Step 1> can be found in Yoo and Kim(1996), <Step 2> and
<Step 3> can be found Rousseeuw and van Zomeren(1990). By plotting <Step 4>, we can
identify the good and bad leverage points and outliers.

3. Examples

In this section, we test the powers of the proposed procedure and compare this with other
methods using stackloss data and artificial data. These data sets have been widely used to
illustrate leverage points and outliers in linear regression.
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3.1 Stackloss Data(Brownlee 1965, reused in Rousseeuw and Leroy(1987))
The stackloss data set consists of twenty one observations on three explanatory and one
response variable. It is known that there are four leverage points{observations 1, 2, 3, 21) and

one outlier point(observation 4). <Table 1> reveals the value of Mahalanobis distance MD;
the robust distance RD; the diagonal elements of hat matrix P and the suggested robust

distance SRD,;. With significant level of 0.05, the cutoff value of MD, , RD; and SRD; are
V5 0.915 =3.06. The largest MD,(observation 17) is only 2.70. The MD, analyzes that there is

no leverage point in this data. According to the p; there is only one leverage point above
the cutoff value 0.381. The robust distances RD, however, clearly point out the four leverage
points(observation 1, 2, 3 and 21). To compute the RD; we should compute 4 C;=5985
subsamples of size 4 observations. A search of all the subset found two subset ({7, 10, 14,
20} and {8, 10, 14, 20}) with the same minimum m’def V(Z);). The robust RD; is computed

based on this two subset. When we apply the suggested algorithm to this data, we obtain the
clean subset of M={10, 8, 20, 14, 16, 18, 19, 7, 5, 2, 13, 15}. Based on this clean subset, we

compute 1,C4=715 subsamples of size 4 observations and find two same subset ({7, 10, 14,
20} and {8, 10, 14, 20}) as the robust distance method. Finally, we have the same result but
the number of calculations are reduced from 5,985 to 715. In this data RD; and SRD; identify

the leverage points correctly, but MD; and p; fail to identify the leverage points.

Table 1. MD;, RD,; p;, SRD; for stackloss data

case MD; RD; D SRD; case MD; RD; bpi SRD;

1 2.25 523 0.30 523 12 1.84 0.79 0.22 0.79
2 232 5.27 0.32 527 13 1.48 0.55 0.16 0.55
3 1.59 4,01 0.17 4.01 14 1.78 0.64 0.21 0.64
4 1.27 0.84 0.13 0.84 15 1.69 2.23 0.19 2.23
5 0.30 0.80 0.056 0.80 16 1.29 2.11 0.13 2.11
6 0.717 0.78 0.08 0.78 17 2.70 2.07 0.41 2.07
7 1.85 0.64 0.22 0.64 18 150 2.09 0.16 2.09
8 1.85 0.64 0.22 0.64 19 1.59 2.29 0.17 2.29
9 1.36 0.83 0.14 0.83 20 081 0.64 0.08 0.64

10 1.75 0.64 0.20 0.64 21 2.18 3.30 0.28 3.30

11 1.47 0.58 0.16 0.58

<Figure 1> reveals four plots of the standardized LS residuals with the Mahalanobis
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distance MD;'s, the standardized LMS residuals with the robust distance RD,’s, the
standardized LS residuals with the diagonal elements of hat matrix p; and the standardized
LMS residuals with the suggested robust distance SRD,’'s respectively. According to the
<Figure 1>, the MD; and the p; have failed to find leverage points and outliers. But the

RD; and the SRD; analyze exactly and point out that there are a good leverage point

(observation 2), three bad leverage points(observation 1, 3, 21) and one outlier (observation 4).

Figure 1. Diagnostics plots of stackloss data
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3.2 Artificial Data(Hawkins Bradu,Kass(1984), reused in Rousseeuw and Leroy(1987))
The artificial data set consists of 75 observations on three explanatory and one response
variables. And it is known that it contains ten bad leverage points (1 ,2, 3, 4, 5, 6, 7, 8, 9, 10)

and four good leverage points (11, 12, 13, 14). <Table 2> reveals MD, RD, p, and SKD,
of artificial data. In <table 2>, the MD; and the p; say that two points(observation 12, 14)

and three points{observation 12, 13, 14) are leverage points respectively. But the robust
distances RD; points out fourteen leverage points(observation 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14). To compute the RD,; Rousseeuw and von Zomeren(1990) computed 5C4 vales



674 Jong Young Yoo

<Table 2> MD; RD; p; SRD; for artificial data

case MD; RD; Dii SRD; case MD,; RD; Dii SRD,
1 1.92 1620 0.06 21.32 39 1.27 1.34 0.03 1.21
2 1.86 1662 0.06 2207 40 1.11 0.55 0.03 0.80
3 2.32 1765 0.09 23.21 41 1.70 1.48 0.05 1.24
4 2.23 1818  0.08 24.17 42 1.77 1.74 0.06 1.59
5 2.10 1782 007 23.58 43 1.87 1.18 0.06 1.61
6 2.15 1680 0.08 2201 44 1.42 1.82 0.04 1.52
7 2.01 1682  0.07 22,13 45 1.08 1.25 0.03 1.31
8 1.92 1644 0.06 2169 46 1.34 1.70 0.04 1.38
9 222 1771 0.08 2353 47 1.97 1.65 0.07 1.75
10 2.33 17.21  0.09 22.87 48 1.42 1.37 0.04 1.16
11 2.45 2023 0.09 26.87 49 1.57 1.27 0.05 1.02
12 311 2114 Q14 2182 50 0.42 0.83 0.02 1.12
13 266 2016 011 2656 51 1.30 1.19 0.04 1.26
14 6.38 2238 056 2047 52 2.08 1.61 0.07 157
15 1.82 154 0.06 1.26 53 2.21 2.41 0.08 2.13
16 2.15 1.88 0.08 1.81 54 141 1.26 0.04 1.41
17 1.38 1.03 0.04 1.20 55 1.23 0.66 0.03 0.99
18 0.85 0.73 0.02 045 56 1.33 121 0.04 1.24
19 1.15 059 0.03 1.08 57 0.83 0.93 0.02 0.96
20 1.59 149 0.05 131 58 1.40 1.31 0.04 1.23
21 1.09 0.87 0.03 0.65 59 0.59 0.96 0.02 1.16
22 1.55 090 0.05 1.50 60 1.89 1.89 0.06 1.98
23 1.09 094 003 0.93 61 1.67 1.31 0.05 2.07
24 0.97 083 0.03 0.99 62 0.76 1.22 0.02 1.23
25 0.80 126  0.02 1.24 63 1.29 1.17 0.04 1.34
26 1.17 086 0.03 1.52 64 0.97 1.14 0.03 1.19
27 1.45 1.35  0.04 1.19 65 1.15 1.40 0.03 1.08
28 0.87 1.00 002 0.65 66 1.30 0.78 0.04 0.96
29 058 072 002 0.68 67 063 0.37 0.02 0.42
30 157 1.97 0.05 1.76 68 155 1.64 0.05 1.27
31 1.84 143 0.06 1.35 69 1.07 1.17 0.03 1.34
32 1.31 09 0.04 1.22 70 1.00 1.04 0.03 1.35
33 098 073 003 0.98 71 0.64 0.64 0.03 0.69
34 1.18 142 0.03 1.18 72 1.05 0.52 0.03 0.77
35 1.24 126 0.03 1.14 73 1.47 1.14 0.04 1.24
36 085 086 0.02 1.16 74 1.65 0.96 0.05 1.26
37 1.83 1.26  0.06 1.88 75 1.90 1.99 0.06 1.66
38 0.75 092 0.02 1.10
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of mldet( V(Z);) and it is very hard to compute. When we apply this data to suggested
algorithm, we obtain the clean subset of M={31, 32, 63, 71, 72, 20, 18, 35, 34, 40, 25, 56, 45,
58, 48, 19, 61, 55, 28, 30, 17, 75, 59, 66, 22, 46, 41, 37, 69, 65, 39, 42, 52, 33, 67, 74, 73, 29, 16,
50} and the calculation is reduced to 39C, times. Finally we find one subset {25, 56, 41, 73}
with the minimum volume ellipsoids. The suggested robust SRD; which is based on this
subset points out fourteen leverage points(observation 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14). So, we have the same result but the calculations are reduced from 5C4 to 3Cy. In
this data, the RD; and the SRD; identify the leverage points correctly, but the MD; and the
h;; fail to identify the leverage points or outliers. As shown in <Figure 2>. the RD, and the
SRD; point out that there are four good leverage point(observation 11, 12, 13, 14) and ten
bad leverage points (observation 1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

Figure 2. Diagnostics plots of artificial data
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4. Conclusion

Multiple leverage points and outliers deserve special attention as they often provide
important clues about the model building and process under study. Thus regression
diagnostics are very important to analyze several data correctly. In this paper, we
attempted to prove effectiveness of the suggested algorithm in identifying and testing
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multiple leverage points and outliers through two examples. As a result, the
suggested robust distance reduces the computational difficulty of Rousseeuw and van
Zeremen'’s method and has good powers in identifying leverage points.
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