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Abstract

The constrained maximum likelihood estimation of the number of trials in several
binomial populations under order restriction, such as simple order, is discussed. The
estimation procedure is based on, so called, pool adjacent violators algorithm. Three
handy estimators are given and their performances are compared using an artificial
example.
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1. Introduction

Many practical problems can be characterized as dichotomous phenomenon, whose outcomes
are generically called success and failure. The most frequently used statistical model for this
phenomenon is the binomial model. The binomial model is based on the binomial distribution
which is characterized by two parameters, one is the number of trials, the other is the
probability of success. In many practical situations where the binomial model is applied the
very interest is focused on making statistical inference concerning the probability of success.
On the other hand, it is rarely necessary to make inference on the number of trials. The
problem, however, sometimes has practical motivation and studied by some researcher.
Binet(1953) is among others.

In some practical situations we are only allowed to observe successes or failures. For
instance, rape victims are very reluctant to report to police or other agents for various
reasons. People who work for the preventive program of rape sometimes might need to know
how many rape victims would be filed if all of them are reported. Since only the reported
cases are counted the total number of rape victims should be statistically estimated. If we are
aware of the rate of reported cases from prior or other studies we can easily estimate the
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total number of rape victims. Later we will discuss this estimation procedure in great details.

As discussed before it is not difficult to estimate the number of trials if the probability of
success is known to us. It is possible to estimate the number of trials even if the probability
of success is unknown to us provided that repeated observations are available and the number
of trials is remained fixed for each observation. In this paper we study the estimation
procedure of several numbers of trials when there appears an order restriction among
parameters.

Suppose there are k& populations. For #th population the binomial model with parameters
N; and p,; are assumed. Let X, i=1,...,kj=1,...,n; be the jth observation from ith
population. Note that each #; is the sample size from sth population and known. And assume
that X ;'s are independent and binomially distributed with N, and p.

As discussed earlier the traditional problem is to estimate 2 ;s provided that N,s are
known. An order restriction would be imposed among p;'s, which is often studied in bioassay

problem. Interested reader may refer Robertson, Wright and Dykstra (1988), Oh(1995) and
many others.

We are, however, interested in estimating N,'s under an order restriction when p,s are

either known or unknown. Even though there are many types of orderings such as the simple
tree order, the simple loop and so on, the simple order is of great interest since it is
indicative of general behavior., Now we assume that

leNzg"'st, (11)
In addition to this N,’s should be integers and must satisfy, for each i,

N ;= max 1<jsn X ij. (1.2)

Now the problem is to find N;s which maximize
5N i x5 Ni—x;
Ijl )l;Il(xﬁ)p,» (1-p2 (1.3)
subject to (1.1) and (1.2). We note that p;'s may or may not be known. For both cases the

maximum likelihood estimation procedure can be implemented.

Since the estimation procedure may vary according to the fact that whether the
probabilities of success are known to us or not, we need to consider the all possible cases
which are;

Case 1. p,=pr=-=p,=p, p is known,

Case 2. pi1,D9, ", P4, are completely known,
Case 3, p1=ps=--=p,=p, p is unknown,

Case 4. py,02,' ", D are completely unknown.
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For Cases 3 and 4 the estimators for numbers of trials are trivial. So we only consider the
Cases 1 and 2 in this paper.

In section 2 we propose three new easy-to-use estimators, which are maximum likelihood
estimators, of the number of trials under no restriction but the limitation of being integer. In
section 3 maximum likelihood estimators under restriction, which are (j) equality of two or
more parameters (ii) the simple order. The algorithm for estimating parameters under order
restriction is basically the same as PAVA (Pool Adjacent Violators Algorithm). We propose
three estimation procedures and compare the performance of the estimators using artificial
examples.

2. The Unrestricted Model

The rather details of estimation procedures under no restriction are given in Johnson and
Kotz(1979). The method of moment estimates with ignoring the limitation that the number of
trials must be integer are given by Fisher(1941, see Johnson and Kotz, 1969). Binet(1953, see
also Johnson and Kotz, 1969) improve Fisher’s estimation by taking into account the fact that
the number of trials must be integer and must be greater than or equal to the maximum
observation. Readers refer to Johnson and Kotz (1969) for full discussion of this procedures. In
this section we are going to discuss the maximum likelihood estimation of the number of
trials under no restriction other than being integer. The estimation procedure is quite intuitive
and easy to use.

To find the maximum likelihood estimate of the number of trials we need to N, which

maximizes

7=

't (N X 1= Xy
Lvy=Th () pia—-sp ™
I\X 3
Consider the ratio L(N)/L(N;+1). We have

N, Tl Ni—xy
L(N;+1) 7= <N1+1)l)f'i(l—pl)~'+l_x'i

X1
= a-p0 " Ha-w).

For fixed x,;,/=1,...,m,, we can easily show that L(N;)/L(N;+1) is a strictly increasing

function of N,.
Suppose that L(N)/L(N,+1) > 1 for N;2max{x,,j=1,..,n,}. Then L(N,) is
maximized when N;= max{x,j=1,...,%;} and hence the unrestricted maximum likelihood

estimate, N, of N, is given by max {xy,7=1,...,n,}.
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Suppose 0 < L(N/L(N;+1) < o for N;=2max{xy,j=1,..,n1}. To find an
estimator we need to ignore the limitation that N,; must be an integer temporarily. The
estimator based on this temporary assumption provides us a good start to find the desired
one, ie. the estimator which meets the limitation. Since L(N;)/L(N,;-+1) is continuous and
strictly  increasing  with respect to N, there exists ?V, which  satisfies
L(N)/L(N{+1)=1 and hence maximizes L(N,). Then the maximum likelihood estimate
of N, is determined around Ni. If N is an integer then L(N;)=L(N;+1) and hence
N, is either N; or N;+1. If is not an integer finding an exact maximum likelihood
estimate becomes much more complicated. Let [x] be the greatest integer which is less than

or equal to x. Since N is not an integer we have

L(N;)
L(N+1)

L(N,)

m)l for N,=>[ N,]+1.

<1 for N;<[ N;] and

In other words L(N,) is maximized when N, is one of N, or N;+1. Now we need to
determine which one gives the maximum value of the likelihood function.
First we discuss about how to determine 'IVI with the limitation of being integer. By

taking logarithm on the both sides of L(N;)/L(N;+1) = 1, we have

zln(l—

Using Jensen's inequality we have

kB ts -l Sa)

)— In(1-21).

which is equivalent to
_l_ _x__u_ _x !

where x ;= 21x,-,-/ n ;. Since the left side of the above equation is equal to In(1—p,) we
=

x x
have In(l—p)<In(1- N1+11) and hence N2 1211

maximum likelihood estimate is going to be determined at either [ x,/p;] or [ x./p,]+1.

—1. We now easily expect that

We are going to show later that the maximum of the likelihood function is attained at either
[ %,/p] or [ x,/p,1+1 using an artificial example.

An approximate solution can be suggested as follows. By taking Taylor expansion for

In(1~ ) about p; up to the second degree, we have

N 1
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Xy X1

—p ) — 1 a2
N1 P30T (W Y

_—Fu_y. ey 1

and

1 3 S VR _

. 2 —_

_ 1 ( % _p)_ 1 _ L
I=py\ Ny+1 7Y 21-p) % (N, +D? Ny+1 7 P1)
Equating the right side of the above equation to In(1—p,;) we have
— S _
1=pi\ Ny+1 Y7 2(-pp 2 (N, +DD2 Ny+1 TP

Solving the above equation for N, gives the solution, denoted by N 1(”) ,

x,(2p,— 1)—\/ 7612(1“2151) ‘- (3pi-2p) ;Z’xi-/nl
-1+ — .
3pi—2p,
Note that the solution must be positive. It has been verified by some simulation that the

likelihood function is maximized when N,=[N{?+1]. It is not straightforward to show

analytically that [N 1(”)+ 1] gives actually the maximum value of the likelihood function.

So far we have proposed three estimation procedures. We are going to compare these three
procedures using an artificial example. For various numbers of trials and probabilities of

success artificial data is generated. For N; we choose four values which are 5, 10, 25 and 50,

for p; the values 0.1, 0.25, 0.5 and 0.75 are used. Four different values of sample sizes are

used. These are 5 10, 25 and 50. The maximum likelihood estimate is determined by
searching the maximum point numerically, which is also a method for finding maximum
likelihood estimator but quite tedious. At this moment we need to point out that we are not
interested in whether these estimators result in over-estimation or under-estimation. A
simulation study based on huge amount of repeated experiments is needed to have an answer
to this question. We are not going to deal with this problem in this paper. Qur main focus is
placed on which estimator produce the estimates close to real maximum likelihood estimate.
As is shown in Table 1 the approximate estimator gives the better performance. The use of

x/p+1 is not recommended.
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Table 1. Comparison of Three Estimators for p;=0.1 Various Values of

N, , p,; and Sample Size - One sample, No Restriction

$1=0.1 $,=0.25
N [Size| x/p I x/p+1 LApprox.l Real | x/p , x/p+1 !Approx.} Real
5 5 0 1 0 0 6 7 6 6
10 3 4 4 5 2 3 3 3
25 4 5 5 5 4 5 4 4
50 4 5 5 5 4 5 5 5
10 5 15 16 16 16 5 6 6 6
10 11 12 12 12 10 11 11 12
25 9 13 10 10 9 10 9 10
50 8 9 8 8 10 11 11 11
25 5 23 24 24 24 27 28 27 27
10 27 28 28 28 30 31 30 30
25 29 30 29 29 24 25 24 24
50 23 24 23 23 25 26 25 25
50 5 45 46 46 46 52 53 52 52
10 50 51 51 51 58 59 58 58
25 45 46 45 45 52 53 52 52
50 51 52 51 51 47 48 48 48
$=05 $,=0.75
5 5 6 7 6 6 5 6 5 5
10 4 5 4 4 4 5 5 5
25 5 6 6 6 5 6 5 5
50 4 5 4 4 5 6 5 5
10 5 10 11 10 10 9 10 11 11
10 11 12 11 11 10 11 10 10
25 10 11 11 11 10 11 11 11
50 9 10 10 10 10 11 10 10
25 5 20 21 21 22 24 25 25 25
10 25 26 25 25 24 25 24 24
25 23 24 24 24 24 25 24 24
50 24 25 24 24 24 25 25 25
50 5 47 48 47 47 54 55 54 54
10 48 49 48 48 49 50 49 49
25 50 51 51 51 50 51 51 51
50 50 51 50 50 51 52 52 52

Now we close this section with stating the estimation procedure for cases 3 and 4. Since
the estimation procedure for case 3 is basically the same as for the case 4, we discuss here

case 4 only. It suffices to consider the one sample case. To maximize the likelihood L(N,)
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the following conditions must be satisfied.

dlnL
b,

dlnL IS SRS S _
Um0 > B8l = mna .

Solve the following system of equations with respect to ij and Wl

=0 = p,N,= }1,

‘Elwl = X1,
I 7 = ~mh(-3.

Note that we need to take into account the fact that (7) N, must be an integer
(i) Ny2max{x,j=1,...,n,}. If N pD>max{x,,;=1,..,n,}, then take the nearest

integer to N and if Ni;<max{x,,j=1,..,n,} then take Ni=max{x,j=1,..,n,).

For more details we refer readers to page 57-58 of Johnson and Kotz (1969).
3. The Restricted Model

In this section we consider the estimation procedure when there appears an order
restriction among N /'s. First we consider the case that the equality of the numbers of trials
is assumed. Suppose that N;=N, but p,;#p, Let N=N,=N, Assume that N is

positive real number temporarily. As we did for the one sample case we begin with finding
L(N)/L(N+1) which is given by

X1j

(1=p) "(1-pp " [la- 570 fla- 220,
If L(N)/L(N+1)>1 for N2max{x;j=1,..,7,i=1,2} then the common estimate, N |
of Nj and N, is given by max{x;j=1,..,n;,i=1,2)}.
Next suppose L(N)/L(N+1)>0 and solve the equation L(N)/L(N+1)=1. By taking
logarithm on both sides of the equation we have
S -+ -5 = a1 p )+ sl (1- )

Applying Jensen’s inequality and after some algebra we have

x x
N+11 )+ nyIn(1- N+21 ) 2 niln(1—p)+n,In(1—p,).
x+y
Note that a*b” <(x—z:'t‘§)&) . See page 17 of Hardy, Littlewood and Polya(1952). Applying

this well-known theorem on the left side of the above inequality we have
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a x1+1\$i_‘id) %2 Y=aln(1—p)+(1—a)In(1—py),

In(1—
where a@=n,/(n,;+ n,) and hence

a_x.1+(]."'d) }2
1-=(1=2) U—pp) ™"
Note that N must satisfy that N>max {x;,j=1,..,%n,i=1,2)}

N=

—1. (3.1

An approximate solution is suggested next. By the similar manner that we used for one
sample case we have the following equation.

AfN+1DE+ByN+1D+Cy=0 (32)
where
A n,(3p3—2p)) n n5(305—2b)
? 2(1—p1)° 2(1-p5)%
B ny x,(1=2p) | nyx:(1—2py)
2 (1-p)°? (1-p°
n 2 n 2
c, = ;xb leZJ

+ 1=
21-pp* " 2009 %"
Solving the above quadratic equation gives a good start for finding the maximum likelihood
estimate N .

Table 2 shows the performance of three estimators for two sample case. The probabilities
of success considered in this study are p;=0.25 and p,=0.25. The other values are
considered but the results are not shown in this paper. The approximate estimator outperforms
the other two estimators as one-sample case.

Next we consider the case that the numbers of trials are the same for more than two
populations. Assume that N=N, =:-= N, where 1<i,<--+{iy<k Analogues of (3.1) and

(3.2) can be obtained easily, respectively. First we have

i —
WIS

=1

1- ﬁ(l“‘Pi)a"

=1,

Nz -1, (33)

i
where a;=n,/( 2 7). An approximate solution is the solution to the following gquadratic
=1

equation;
A il:iZ(N+ 1) 2 + B il:iZ(N+ 1) + Cil:iz = 0,

where
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_ 3 ni3pi-2p)
Aililz.—. ,Z,l 2(_1—17,‘)2 ’
2 on;x,(1—2p)
B;.., = '
11tz 1=1, (l—pl)z
SO
LAEE ] 1=, 2(1~pz)2

Table 2. Comparison of Three Estimators for Various Values of Sample Size
- Two sample, Equality Restriction

Ny

7y Estimator 5 10 25 50
5 x/p 26 31 27 26
x/p+1 27 32 28 27

Approx. 26 31 27 26

Real 26 31 27 26

10 x/p 26 23 25 25
x/p+1 27 24 26 26

Approx. 26 24 25 26

Real 27 24 25 26

25 x/p 25 29 23 25
x/p+1 26 30 24 26

Approx. 26 30 24 26

Real 25 30 24 26

50 x/p 25 28 26 25
x/p+1 26 29 27 26

Approx. 26 28 26 26

Real 25 28 26 26

The above result will be used extensively in the following restricted estimation procedure.
Now we begin to discuss about the main result of this paper. First we consider the case

of k=2. Suppose N|<N,, p=p,=p, and p is known. The problem is to find N; and

N, which maximize

Q(Nl) ' ﬁ(ivz) 71— T (3.4)

X1 T=1\X 2
subject to N,<N,, N/s are integer and N,Zmax{x; j=1,...,n;}. Note that

n
x. = ﬁ‘ zlx,,-. If N;<'N, then the restricted estimates, N] and N3, are given as
e



708 Myongsik Oh, Eun-Kyoung Lee

Ni= N, and N;= N, respectively. Suppose that N; > N, To find the restricted

maximum likelithood estimate we need the following lemma.

Lemma: Let f and g be the two nonnegative real-valued unimodal functions with peaks
at @ and b, respectively, and a@<b. That is Ax)<Ax ) for x<x <a and Ax)>Ax) for
a<x<x . Similarly for g Then the maximum of Ax)g(y) subject to x>y is attained when
x=3.

Proof: Suppose y=a. Then «x=a and hence Ax)<Ay). Hence we have
Ax)g(»<A3»)g(y). Suppose x<b Then y<b and hence g(y)<g(x). Therefore we have
Ax)g(y»)<Ax)g(x). This completes the proof.

Consider the two likelihood functions in (34). Note that L{(N,)/L(N,+1) is strictly
increasing in N, with L(N;)/L(N,;+1)>0. This means that L(N;) is unimodal with
respect to N;. So L(N,) is. It is clear that the peaks of these functions are observed at
Ny and N, respectively. Note that N> N, Since we need to maximize (3.4) subject to
N <N, the maximum value of (3.4) is obtained when N,=N,.

Now we rewrite (3.4) in terms of new variables. Let N=N;=N,. And let y,=xy; for
j=1,..,mn; and ¥4, =x for j=1,...,n5 Then we have

ni+n, -
i1 (N) (1= p) TN

=1 \¥;

n+n,
where y = 21 vi/(n+mny). This is just a one sample problem. We have discussed about
=

estimation procedure extensively in section 2 and earlier part of this section. The maximum
likelihood estimate, N} and N3j, is given by either [ y/p] or [ y/pl+1. An approximate

solution is the solution to the following equation;

nitn, 2
(n1+n)(3p%—2p) 2, ¥.(1-2p) _sziz
200-p)° (N+1) "+ (1-pt NV 557 =0

It is quite straightforward to extend this to the case of unequal probabilities of success. For
estimates use (3.1) and (3.2).

Finally we discuss the estimation procedure for the general ordering. Let < be a partial
order on an index set I={1,2,...,k}. A real valued function defined on I is said to be
isotonic with respect to the partial ordering < on I if x, yeI and x<y implies Ax)<Ay).
A subset B of I is a level set if and only if there exists an isotonic function fon [ and a

real number @ such that B=[f=a]. Let us revisit the case #=2. The index set is
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I={1,2} and partial order is defined as 1<2. The restriction is N,|<N,, ie, N,s are
isotonic with respect to <. The problem is to find an isotonic function N ; with respect to
<. If N;<N, then Ni= Nj and N;= N,. Note that N1{Nj and hence we have two
level sets which are {1} and {2}. If N> N, then N}=N} and we have one level set

which is {1,2}. To find the estimate we pool two sets of observations. This is the key
concept in finding an isotonic function, which we call isotonic regression. A well known
algorithm for finding an isotonic regression is so called PAVA (Pool Adjacent Violators
Algorithm). See Robertson, Wright and Dykstra (1988) for full description of isotonic
regression.

4. Concluding Remarks

In this paper we did not discuss about testing problem. We can implement the likelihood
ratio test procedures for testing for and against an order restriction among the numbers of
trials. Since we were not able to give the explicit form, which is practically intractable, of
maximum likelihood estimate the derivation of testing procedure would be very difficult. We
also did not give the full simulation results. As we discussed earlier we need to check
whether the proposed estimators produce over-estimation or under—estimation.
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