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Conditional Least Squares Estimators of the Parameters of the
NLAR(p) Time Series Model
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Abstract

Conditional least square estimators for the parameters of the NLAR(p) time series
models are obtained. It is also shown that these estimators are consistent and
asymptotically normal.

Keywords : New Laplace Autoregressive process; Random coefficient autoregressive process;
Conditional least squares estimator; Consistency; Asymptotic normal distribution

1. Introduction

It is uaually assumed in standard time series analysis that the marginal distributions of
{X,} are Gaussian. However, there is number of real data such that Gaussian distribution is

not appropriate, for example, highly skewed and long-tailed data. Recently a number of
non-Gausian time series models have been developed. One class of the models is the class of
Laplacian time series models characterized by the fact that the marginal distribution of the
observation follows Laplace distribution.

A new Laplace autoregressive time series model of order 2 - NLAR(2) was introduced by
Dewald and Lewis(1985). In their paper, correlation structure and distributional properties have
been studied extensively so that we have a good understanding of the underlying mechanism.
Necessary and sufficient condition for existence of stationary ergodic NLAR(p) time series
model has been obtained by Kim and Billard(1997). However, very little has been done on
estimation @ only the conditional least square estimators for the NALR(2) model have been
obtained by Karleen and Tjosteim(1988).

It is pointed out by Lawrence and Lewis(1985) and Dewald and Lewis(1985) that the
NLAR(2) model is a special case of the so-called random coefficient autoregressive (RCA)
models which are treated by Nicholls and Quinn(1982). In this paper, we will show that the
NLAR(p) model is a special case of the RCA models in section 2 and obtain the conditional
least square estimators for the parameters of the NLAR(p) models by using the estimation
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techniques for the RCA models in section 3. Furthermore, it will be shown that the conditional
least square estimators are strongly consistent and asymptotically normal in section 4.

2. Preliminary

The NLAR(p) process {X;} is of the form

BlXt-l w. p. a
32)?:—2 w.p. ay

Xt = &; + 2.1

By Xi—» w.p. a,
0 w.p. ay= 1—01_02_"""0/1,

where the distribution of the iid innovation squence {e;} is chosen so that the stationary

sequence {X,} is standard Laplace, ie.,
) =+ exp(—1x]), =0 (aceo 22)

As shown in Kim and Billard(1997), there exists a strictly stationary ergodic process {X,}
satisfying the equation (2.1) if either of the following conditions holds:

(1) P(Bywm=0)>0

or (2.3)

2) P(1 Bl >0)=1, Ele/l <o, and E| Byl <1

where By, is a random variable of the following form:

Bl w.p. a
62 w.p. a;
B](n)z )
B, w.p. a,
0 wp. apg=1—ay——a,

The NLAR(p) models can be formulated as a pth-order RCA process which is treated in
Nicholls and Quiin(1982). The univariate pth-order RCA models are given by

X,= 2‘1 {74 B(D) Xoei + & (2.4)

where 7; , i=1,2,-,p are constants and B,= (B (#), By(?),*, Bi(#)) is iid random
vector and also independent of {e;} which is iid innovation sequence of mean zero and

variance oze {00,
It is easily seen that the equation (2.1) can be written as the equivalent form to the eguation
(2.4), ie.,
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X, = ZIK,,XH + e (2.5)
where the joint distribution of (K, K,, ---, K, ) is given by
K,=8, K,=0, -, K,=0)=gq,
KK,=0, K,=8, =, K,=0)=a,
(2.6)
P(K,=0, K,=0, -, K,=8,)=ua,
KK,=0, K,=0, -, K,=0)=1—a,—a,——a,
Hence, if we set
yi=aB; and B;(H) =(K,—a;B;), i=1,2, -, p, 2.7
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then the NLAR(p) model becomes a special case of the RCA(p) model and can be simply

expressed as the following matrix form:
th 7’X1_1+ut (2.8)
where ¥ = (71, 72,,75), X1 = (X0, Xip, ., Xip),and u,= B X, |+ e
It is noted that letting
E(K,) =7, VarlK,)=o0; and Cow(K,,K,) =0y 1, j=1,2,,p,

we have

vi=apf;, E[B]=0, and E[ B/B]=2% (2.9)
where 0 is the (1Xp) zero vector and X is the (pXp) symmetric matrix whose (i, j)th
element is

Uii=/3%a’i(1—di) and 0;= —a;a;B:8;, i, 1=1,2,--,p, i#FJ (2.10)

3. Conditional Least Squares Estimation

The parameters a; and f3; of the NLAR(p) model in the equation (2.1) can be expressed as

a function of y; and o; from the equations (2.9) and (2.10). Solving these equations in terms

of a;, B;, t=1,2,,p and letting 7/'\, and o/'; be estimators of 7; and o0y respectively, we

obtain estimators Zz\,' and B\, of the parameters of the NLAR(p) model as follow :
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-~ 7i
a;= —=
Pi i=1,2,,0 (3.1)
5 Oii
Bi=—= + 7

Thus we only need to find out the estimators 7/'\, and 5,:- to estimate @; and

Bi, 1=1,2,--,p.

Let ¥, be the o-algebra generated by {X,, X,.;, X,—2, -} which satisfies the equation
(2.8). The conditional least squares(CLS) estimation has a two-step procedure. The first

step is to estimate the parameters 7, ¢=1,2,:--,p. Given the sample X, X,, ', X,, we

can obtain the conditional least squares estimate 7/'\, of 7; by minimizing h;luf where

u, =X, E[Xt | ?:t-l] =X;— 7'Xt—l'

Hence, ,;' is given by
= (XX )T 3 XX, (32)

The above equation can be rewritten in terms of 7//\, as follows

S B XX = 3 B AKX, i= 12,0, (33)

The second step in the estimation procedure begins by developing E[#%| F,_,]. From the
equation (2.6), we have
E[u% l 3‘:—1] = E[e?] + ZE[etBtXt—l | 7:—1] + E[(BIXI—1)2 | Tt—l]
=d + X,-'E[B,'B])X,-, (3.4)
=+ X" EX
In order to solve the above eqation for o, we need the Kronecker product and a
component vector which are defined in Nicholls and Quinn(1982).
Definition 1. Let A and B be (mXxn) and (pXq) matrices respectively. Then the Kronecker
product A®B of B with A is the (mpXng) matrix whose (i, j)th block is the (pxg) matrix
A;B where Aj is the (i, j)th element of A.

Definition 2. Let A be (mXn) matrix. Then the mn-component vector vecA is obtained
from A by stacking the columns of A, one on the top of the other in order from left to right.

Definition 3. Let A be an (nxXn) symmetric matrix. The n(n+1)/2 -component vector
vechA(the vector-half of A) is obtained from A by stacking those parts of column of A, on
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and below the main diagonal, one on the top of the other in order from left to right.

Two properties from the above definitions hold for any matrix products which are defined.
Property 1. wvec( ABC) = (C'® A)vecB
Property 2. There exist constant ( #(n+1)/2 X n?) matrix H such that

vecA = H'vechA for any (nXxXn) symmetric matrix A.

By using these properties, the equation (3.4) can be expressed as
Eldd |F,o)] =+ (X,_1"®X,_)vecE
=2+ (vec(X,-,"®X,-1)) H vechE
=0+ Z,8
=+ 8 Z,

where 8= vechE and Z,= Hvec(X,_;’"®X,-1") with (p(p+1)/2Xp>) matrix H whose

(35)

(i, pth block Hj is ( (p—i+1)xXp) zero matrix below diagonal, (0 I) on diagonal where

0is ((p—i+1)x(i—1) zero matrix and Iis ( (p—i+1)x(p—i+1)) identity matrix, and
(, Dth element of Hj is 1 and 0 elsewhere above diagonal.

Let 7,= u?— E[4«*| F,.,]. Then the CLS estimator & of & can be obtained by

minimizing 217/%. Hence, we have
t=p

3= 3 (Z- 20z~ DV 3 @z D) 36)

=3
where Z = 1 ﬁ; Z, in which the elements -LZXf_i, i=1,2,,p ofLZZ, are equal
N t=p+1 n -t n ot
to 2, since {X,} follows the standard Laplace distribution.

The equation (3.7) can be rewritten in terms of &5 as follows:
3 CXh-D= 35 3 (XK -, —-2), i=12p 6D
t=p+1 7= t=p+1

where G,= (X,— ;?{Xt—l)z'—Z;Z 0i(Xi-iX,-;— Zz) and

Zi= ‘% lXt—in—j

t=p

4. Strong consistency and Asymptotic normality

In this section, the CLS estimators /;' and /\6 will be shown to be strong consistent and

have asymptotic normal distribution. These facts imply that the CLS estimators &\,- and
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B, 1=1,2,--,p will have the same results.

Theorem 3.1 For the NLAR process {X,} satisfying the equation (2.8) under the
assumption (2.3) and the CLS estimator ’5' given by (3.2), 3' converges almost surely to 7.
furthermore, \/71(’;'— y) converges in distribution to the normal distribution with mean 0
vecter and covariance matrix cV I+ VIEI X, X' rZ] V! where
V=El X,-1X:1"]
Proof From the equation (3.2), /;'—- 7 is givn by
y-r=LEx X A SXX) -y
(13X, X U S (XX - XX ) 41
= {% Zt Xt—IXt—ll}_l{% ZtXt—lut}
Since {X,} is a strictly stationary and ergodic under the assumption (2.3), so are

{ X,-1X,_1"} and {X;_ u;}. Furthermore, V is finite and

E[Xt—]ut] = E[E[Xl—lutl 7:[*1]]
= E[X,_IE[ut| 7[-1]] (42)
=0

Thus, %Z X, X, and —%;ZX +—1u4; converge almost surely to V and ( respectively

so that }— ¥ converges almost surely to 0,
Now if ¢ is any p-component vector, then we have

El Xi—qu: | Fizil1=0 (4.4)
and

E[( C’Xt—lut)z | F.-11 = E[ El( C"Xt—lut)2 | F.-11]

=E[( X, ) E[d | F 1] (45)
?E[( cXi-)NE+ ¥Zy)]

since E[ X/]< .
Thus, 71; ZC'X (—14; converges in distribution to the normal distribution with mean 0 and

variance E[( ¢’X,_;)%(2+ 7'Z,)] by the Martingale central limit theorem.

This implies that \/71(;'—- 7) converges in distribution to the normal distribution with mean
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0 vecter and covariance matrix oV !4+ VIE[X 1 X'’ Z1 VY where

V= E[ X,_lX,_l'].

Theorem 3.2 For the NLAR process {X,} satisfying the equation (2.8) under the
assumption (2.3) with E[X,%]<¢ o and the CLS estimator & given by (3.6), -6

converges almost surely to (. Furthermore, \/7_1( ’3— 8) converges in distribution to the

normal distribution with mean 0 vector and covariance matrix
RTE[(Z,— E(Z))( 2Z,— E(Z)) (dd— 2~ vZ)*IR™} (4.6)
where R= E[(Z,— E(Z))X(Z,— E(Z,))"].
Proof Let & be defined by
8=1{3X2~ 2)(2,~ 2)V 'S} 2.~ Z) A

It was shown in Nichools and Quinn (1982) that N&— ’(\? converges almost surely to 0,
while @(3* /(\?) converges in probability to 0. Hence if 6 — & is shown to converge
almost surely to 0, and Vn(é-— #) converges in distribution to a normal, then S— 8
converges almost surely to ( and \/;5(1\6— 8) converges in distribution in the same way as

Va (8~ &). Thus we need only prove the result for .
From the equation (4.6), we have

5 — (L _7 _ 7y -1L — TV —
=8 ={-2(2—-2)(2 )Y 22— D)~ 8

= (L2 Z-D(Z-DV' Lz - D - (z-Dr8) ww
(L3(z-D(z-D) L3z, 2

where & =1u— o — ¥Z,
It is easily seen that %Zté, converges almost surely to 0 by the ergodic theorem, since
{&} is ergodic and E[& | F,-1]1=0. It is also seen that %Zt,‘Z,E, converges almost

surely to 0, since {Z,£;} is ergodic and E[Z,&]= E[Z,E(&,| F 1)1 = 0. Moreover,

%Z( Z,~ Z)( Z,— Z)" converges almost surely to R. Thus é6— & converges almost
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surely to (.

Now , if ¢ is any p(p+1)/2 -component vector, we have

Elc(Z,— 26| F o 1 =El ¢ (Z,— ZH{EE) | F 3] =0

and
E{ (2, — 2)eY* | F - 1= E{ ¢ (Z, — DYHEED) | F )] o
since E[X,%] ¢ oo.

Thus Vlzzt: ¢’ (Z,— Z)&, converges in distribution to the normal distribution with mean 0

and variance ¢’ E[(Z,— E(Z)NZ;— E(Z)) (ul—d— vZ) ]ec

Hence, \/—7_;(73— &) converges in distribution to the normal distribution with mean 0 vector
and covariance matrix given in (4.7).

Corollary 4.3 For the CLS estimators 5:,- of 0;, t=1,2,--,p, which are the elements in

-~

8" = (011 Oy ***0p: O Onp " Opi*"":04)", 0Oy converges almost surely to o,  Furthermore,

\/71(3;,' — ¢;) converges in normal distribution with mean 0 and a appropriate variance.

Theorem 4.4 For the NLAR process {X,} satisfying the equation (2.1) under the
assumption of (2.3), the CLS estimators a@; and B, i=1,2,,p given in (3.1) are

consistent. Furthermore, both of Vx (a; — a) and Va(B;— B;) converge in normal distribution

with mean 0 and the respective appropriate variance.

Proof Since y; — y; and o0; — o0y , we have a@;,— @; and B;, — B; .

Convergency in distribution is clear from Slutsky’s theorem.

5. Conclusion

The New Laplace autoregressive model of order p - NLAR(p) model is a special case of the

random coefficient autoregressive models. In this paper, the conditional least square estimators
for the parameters of the NLAR(p) time series models are obtained by using the estimation
techqenic developed by Nicholls and Quinn (1982). It is also shown that these estimators are
strongly consistent and asymptotically normal.
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