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Evaluation of the Block Effects in Response Surface Designs
with Random Block Effects over Cuboidal Regions

Sang Hyun Parkl

Abstract

In many experimental situations, whenever a block design is used, the block effect
is usually considered to be fixed. There are, however, experimental situations in
which it should be treated as random. The choice of a blocking arrangement for a
response surface design can have a considerable effect on estimating the mean
response and on the size of the prediction variance even if the experimental runs are
the same. Therefore, care should be exercised in the selection of blocks. In this paper,
in the presence of a random block effect, we propose a graphical method for
evaluating the effect of blocking in response surface designs using cuboidal regions.
This graphical method can be used to investigate how the blocking has influence on
the prediction variance throughout all experimental regions of interest when this
region is cuboidal, and compare the block effects in the cases of the orthogonal and
non-orthogonal block designs, respectively.

Keywords ' response surface design; random block effect; cuboidal region moment; blocking
effect graph.

1. Introduction

The traditional method in most response surface applications is to treat the block effect as
fixed in the assumed model. There are, however, experimental situations in which it is more
appropriate to consider the block effect as random. It is important to properly identify the
nature of the block effect since the type of analysis to be used depends on whether the block
effect is fixed or random. Consequently, doing a fixed-effects analysis instead of a
random-effects analysis when the block effect is random may, in general, lead to incorrect
conclusions, In general, random effects occur as a result of sampling from large population.
The presence of random block effects, in addition to the usual fixed polynomial effects, in a
response surface model results in a so-called mixed model. The use of such a model in a
response surface environment was first considered by Khuri(1992), and Khuri(1996) extended
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his work by the addition of interaction terms between the fixed polynomial effects and the
random block effects.

The conditions for a response surface design to block orthogonally were given by Box and
Hunter(1957) for a second-order model and by Khuri(1992) for the general case of a model of
order d(=1). In many experimental situations, a response surface design may not block
orthogonally. Therefore, it is imperative that the block effect be accounted for before any
exploration of the response surface is carried out. Dey and Das(1970) introduced the concept
of non-orthogonal blocking for the special case of second order models and Adhikary and
Panda(1990) presented a sequential method for constructing second-order rotatable designs in
non-orthogonal blocks. More recently, Khuri(1994) demonstrated the effects of the blocks on
estimating the mean response, on the prediction variance and on the optimum of the response
surface model with fixed block effects.

As a graphical technique for evaluating the prediction capability of response surface designs,
Giovannitti-Jensen and Myers(1989) proposed a variance-based graphical approach for standard
response surface designs that considers plots of the maximum, the minimum and the spherical
average of the prediction variance on spheres of varying radii inside a region of interest. In
addition to the prediction variance, Vining and Myers(1991) extended a graphical procedure for
evaluating response surface designs in terms of the mean squared error of prediction and as
another graphical method for evaluating the prediction capabilicy of response surface designs,
Khuri, Kim and Um(1996) proposed quantile plots of the prediction variance for response
surface designs. Using the concepts of Khuri(1992, 1994) and Giovannitti-Jensen and
Myers(1989), in the presence of a fixed block effect, Park and Jang(1999a) proposed measures
for evaluating the effect of blocking in response surface designs in terms of prediction
variance when a region of interest is spherical. And Park and Jang(1999b) proposed another
graphical method for evaluating the effect of blocking in response surface designs.

All of the discussion and illustration in the preceding papers deals with prediction variance
for spherical regions. In this case it is natural to observe values of prediction variance(apart
from random error variance) averaging over the volumes or surfaces of spheres. However, it
is not natural to deal with the volumes or surfaces of spheres when the natural region of
interest is a cube(See Myers and Montgomery(1995, p.381).). Rozum and Myers(1991) and
Myers et al.(1992) extended the work of Giovannitti-Jensen and Myers(1989) from spherical to
cuboidal regions. Both are useful tools for comparing competing designs or blocking
arrangements of a response surface design. Using the ideas proposed by Khuri(1994) and
Rozum and Myers(1991), Park and Jang(1998) proposed a graphical method for evaluating the
effect of blocking in response surface designs using cuboidal regions in the presence of a
fixed block effect, and Park and Jang(1999c) proposed a measure for evaluating the effect of
blocking in response surface designs using cuboidal regions in the cases of fixed effects and
random effects, respectively. The drawback of the measures proposed by Park and
Jang(1999a,c) gives only single-valued criteria for the entire experimental region, but the
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above-mentioned graphical method describes what happens inside a region of interest, R and
provides better comparisons among blocking arrangements.

In this paper, using the ideas proposed by Khuri(1992), Rozum and Myers(1991) and
Giovannitti-Jensen and Myers(1989), we propose a graphical method for evaluating the effect
of blocking in response surface designs with random block effects over cuboidal regions. This
article will be the extended work of Park and Jang(1998). This graphical method can be used
to assess graphically the overall variation in the prediction variance resulting from blocking,
throughout the entire experimental regions of interest, when this region is cuboidal, and
compare the block effects in the cases of the orthogonal and non-orthogonal block designs,
respectively.

2. The Effect of Blocking on the Prediction Variance
in Model with Random Block Effects

Let us consider a response surface model of order d(=1) in % input variables,
X1, %2, ", %% The mean response, 7(x), at a point x=(x;,%xy,-,xp)  inside a region of
interest R is given as

nx)= x5 8 (1)
where x5" =(1,x1,%3,",%,) is a vector of order 1X(p+1) whose elements consist of the
x; terms along with their powers and cross-products of these powers up to a degree d and
B=(8y, 81, B, --',Bp)' is the vector of unknown constant parameters. For a first order model

x5 =(1,%;,%9,,x,) and  B=(By, 1, B, ", By’ and for a second order model x5" = (1,

X1, X, Ky Ky X5, 0 Xy X 1%, 0, X1k, X 4 1Xp) and 8= (B, B1, Ba. . Bus Bris Bz B s
Bz B Be-1)

Suppose that the experimental runs used to fit a response surface model are not
homogeneous due to the presence of an extraneous source of variation, denoted by &, whose
levels is a random sample from a much larger population. Let the experimental runs be
arranged in & blocks, where the runs within a block are somewhat homogeneous and #;
denote the size of the sth block(j=1,2,:-,b) such that n= Zl n; The response vector y
which consists of the # observations, can then be represented by the model

y=Xp+Zdé+ ¢ (2)
where X is an nX(p+1) model matrix, the elements of the vector 8= (8, B1, B2, ", By’

are unknown constant parameters, &= (8}, &3, **,8)", where §; denotes the effect of the jth

block, Z is a block-diagonal matrix of form Z=diag( 1,, 1,,.", 1, ), where 1, is a
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vector of ones of order #;x1 (j=1,2,--,b) and & is the #x1 vector of random errors
which is assumed to have a zero mean and a variance-covariance matrix UEI,,, where [, is

the identity matrix of order #nXxn.
Unlike the case of a fixed block effect, this case deals with situations in which the block

effect in model (2) is random so that ¢ is distributed as (0, 63I;) independently of & Model

(2) is therefore a mixed model, since 8 is a fixed parameter vector. The mean response
vector and variance-covariance matrix of y are respectively E(y)=X 8 and

=0, + 577 = dtA (3)

where A=diag(A,, A,, -, Ay, where A;=1,+¢,, (j=1,2,--,b), where Ja, is an

n;X n; matrix of ones and

{= 03/ 0% (4)

In general, ¢ is unknown and should therefore be estimated by finding suitable estimates of

the variance components, 023 and oﬁ However, since our concerns is merely in the

performance of an experimental design, we consider a fixed ratio ¢ Khuri(1992) demonstrated

that if the ratio & is known, then the BLUE of 8 is the generalized least squares estimator

B, given by B.=(X'A7'X) 'X’A "'y and the variance-covariance matrix of B, is
&g g F:4

Var B = (X 'A7'X) 1o )
And the predicted value of the mean response in model (1) is given by
7 x)= x5 B,. )
The prediction variance of 7,( x) can therefore be written as
Varl 7,0 x)1= z, (X' A7'X) ™ 5,62 7)

It is meaningful to compare the prediction variances of a blocked design and an unblocked
design when there are block effects, that is, o‘?‘;>0. Though there are block effects, the
ordinary least-squares estimator :6’\0 of B obtained by ignoring the block effects is used as
B.,=(X'X) 'X’y and the variance-covariance matrix of B, is
Var( B)= (X 'X) "' X' AX (X 'X) ™' ®)
And the predicted value of the mean response in model (1) is given by
18 0= x5 B,.
The prediction variance of 7,( x) can therefore be written as
Vard 7 2)1= 2, (X' X)X AX(X'X) ™ x40 9)

Note that in a standard response surface model with no random effects, :6\g= fB\o= B=
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(X'X) 'X'y, Var{B)= Var( B)= Var( B =(X'X) "'¢2, and hence
Varl 7, £)1= Varl 7, £)1= Vard 7 ( x)],

where Var{ 7,( x)] denotes the prediction variance when the block effects are zero.

3. A Graphical Method for Evaluating the Effect of Blocking
in Response Surface Designs

All of the discussions and illustrations in the above-mentioned papers deal with prediction
variance when a region of interest is spherical. However, it is not natural to deal with the
volumes or surfaces of spheres when the natural region of interest is a cube. That is, cubes
nested inside the design cube can be more natural. Rozum and Myers(1991) extended the
work of Giovannitti-Jensen and Myers(1989) from spherical to cuboidal regions. In the
presence of a fixed block effect, Park and Jang(1998) proposed a graphical method for
evaluating the effect of blocking in response surface designs using cuboidal regions. Park and
Jang(1999¢) proposed a numeric measure for evaluating the effect of blocking in response
surface designs using cuboidal regions in the cases of fixed effects and random effects,
respectively.

Thus, so as to assess graphically the overall variation in the prediction variance caused by
blocking, throughout the entire experimental regions of interest, we propose a graphical
method that quantifies the effect of blocking in response surface designs with a random block
effect over cuboidal regions. From the formulas (7) and (9), let us consider

Va( 2)= V‘”[OZ(K)] = 2 (X'A7IX) 1 g, (10)
and
vl =D e ax e . an

From the formulas (10) and (11), we define quantities as followings ;
CVon= ¢ [ Vi x)dz 12)
= ¢fc, X5’ Qp xpdx
is called the cuboidal average blocking variance and
CVag(P) = ¢fC' Vi x)dx (13)
= ¢fc, Xp Qu xpdx

is called the cuboidal average unblocking variance. Here, the radius 7 is defined as the

distance from the center of the hypercube to its face, C, is the surface of a hypercube with
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a radius 7 defined by C,={x:—r<x;<v7r, i=1,2,-,kiFj x;j=*7r}, ¢'_1=de26

implies integration over the surface of the hypercube with a radius #» and @p is the matrix

of order (p+1)x(p+1) of the form Qp=(X'A7'X)"! and Qp is the matrix of order

(p+1) x(p+1) of the form Qu=(X'X)'X'AX(X'X)"! and ¢ '= | dx is the
C,

surface area of C,. By applying the properties of the trace, C VaB,,g( ¥) and CVng( ¥) are

written by
CVor = ¢ |t x5 Qs x4)dx
- tf[(pfcrﬁﬁ KB'Qde] (14)
= t1 C'Qgl
and

CViN= ¢ th x5 Qu zsldx
= t”{ﬂl’fc Xg zg'Qudx] (15)
=t C*Qu]

where C'= ¢fc Xg X5 dx is the matrix of the cuboidal region moments, the region being

the hypercube defined by C,.
Rozum and Myers(1991) derived the following cuboidal region moments for the case where

C, is the surface of a hypercube with face of length 2# defined by C,={x:—r<x;<7,
i=1,2,,kiF jixj= L r}. Let
r r r r
p 1_ fc,d‘&z g‘\[ f_r"'f_rdxl"'dxi—ldxj+l"'dxk+ f_r"'f_rdxl"'dxj—ldxjﬂ"‘dxk],

where the first multiple integral is on the hypercube with x;=-—# and the second multiple

integral is on the hypercube with x;= 7 . Then, a cuboidal region moment of order ¢ on C,

is defined as following ;
= a4 s
O qar-ai™ ¢’fc'x1 xzz"'xk dx o
ﬁ ’ 7 a1 a2 Qi
= 2¢ }=1f_r...f_rxl x5t diy ;g dx sy diy
where ¢‘1= fc dx= k2! is the surface area of C, with a radius » and ¢y, g3, ***, 4, are

nonnegative integers such that ﬁlq,: g<2d. Since C, is a symmetric region, the cuboidal
&

region moment 0,4, is 0 if at least one g¢; is odd (¢=1,2,--,k). The cuboidal region
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moments that are used in the development of a graphical method for the first-order and
second-order model cases are the second and fourth-order cuboidal region moments given by
0y = ¢fcx%dﬁ= k-ng a ,

4
o= ¢ [ dtdz=EENT an

(b+4)7*
Op= ¢'fcxgx?dx= k_gk r

Thus, by applying the cuboidal region moments in the formulas (16) and (17) to the
formulas (14) and (15), we obtain that in the case of a first-order model,

CVa(n=a+ ELAL 351 g

and

CVoN=e"+ —(—L—-k-gg 2 geﬁ

and that in the case of a second-order model,

CViutn= a*+ D= (81042 32 o)

“ (18)
(B+4) 7" 1 iy, 1 i i
t k [ 5 & +1d + 9 [:‘=§+1d + z'-—$+1 j=§+}d ]}
¥
and
U 00 §k+227’2 ﬁ‘\ i 1i
CVoue(n= e" + oy (’= e +2i € ) (19)

§k+427’4 1 ﬁ i __L i $ i
+ k {5 ¢ Ty (:'=;+le t i§;+1 j;;le )}
¥

where d” is the (i) element of Qp and e” is the (i) element of Qu (4,7=0,1,2,
--.p). The quantity, C Vang( r), is the average of the prediction variances after blocking
throughout the entire experimental regions on the surface of the hypercube with a radius 7,
and hence appears as a function of # The quantity, C Vg,g( 7), is the average of the prediction
variances obtained by ignoring block effects throughout the entire experimental regions on the
surface of the hypercube with a radius » when there are block effects, and hence appears as

a function of 7
Also, from the formulas (10) and (11), let us consider

CVﬂax(V) = max zeC,[ .xﬂ‘QB .xﬁ] (20)
CVEn(») = min ecl x5 Q5 x4)

and
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Cvgax(r) = max zeC,[ .X,Q’QU.ZC/?] 21)
CVI%n(» = min ,ecl x5 Qu 4]

where C,={x:—7r<x;<7r i=12,kiFixj=%r}, Q= (X'AT'X)"! and Qu=
(X'X)'X’AX(X'X)™'. Then, it is required that these quantities, CVE (), CVE. (¥,
CVY . (») and CVY,(7) be maximized and minimized over locations on a hypercube with a

radius 7. These quantities can be used as a graphical method to assess graphically the
overall variation in the prediction variance resulting from blocking, throughout the entire

experimental regions of interest, when this region is cuboidal. Thus, we can plot these
quantities, CVE,,. (#), CVE(»), C VE.(»), CVYu (), CVY(») and C VY. (#), against a radius

7. We call this graph the blocking effect graph(BEG) in the case of a random block effect
when a region of interest is cuboidal.

Through' these graphs, we can investigate more clearly the overall variation of the
prediction variances caused by blocking against a radius # and compare the block effects in
the cases of the orthogonal and non-orthogonal block designs, respectively, and hence we can
clearly see that to choose which blocking arrangement in the same experimental runs with a
random block effect is more effective in terms of prediction variance when this region is
cuboidal.

4. A Numerical Example

Let us consider the example used in Khuri(1994) and Park and Jang(1998, 1999a,b,c). This
example is based on an experiment described by Box and Draper (1987, p.360), concerning a
small reactor study. The experiment was performed sequentially in four blocks, each
consisting of six runs. Three input variables were considered (ie. F: flow rate in liters per
hour, C: concentration of catalyst, T: temperature). Table 1 shows the basic design described

by Box and Draper (1987). A second-order model in x; x; and x3 was fitted. Here, x; %
and x; denote the coded values of F, C and T, respectively. The basic design is of the

central composite form with four center points and a replicated axial portion. This particular
design is rotatable and blocks orthogonally, as can be verified by applying Box and
Hunter's(1957) conditions.

In order to illustrate the effect of blocking on prediction variance, let us consider other
blocking arrangements of the same 24 experimental runs in Table 1. These blocking
arrangements are described in Table 2 which is modified from Table 2 in Khuri(1994), which
are the same blocking arrangements used in Park and Jang(1999a,c). All blocking
arrangements are scaled so that the design perimeter is restricted to being inside a unit cube.
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Table 1. The basic design

Block Exp. run X X5 X3
1 1 -1 -1 1
2 1 -1 -1
3 -1 1 -1
4 1 1 1
5 0 0 0
6 0 0 0
2 7 -1 -1 -1
8 1 -1 1
9 -1 1 1
10 1 1 -1
11 0 0 0
12 0 0 0
3 13 -V2 0 0
14 V2 0 0
15 0 -V2 0
16 0 V2 0
17 0 0 -V2
18 0 0 V2
4 19 -V2 0 0
20 V2 0 0
21 0 -V2 0
22 0 V2 0
23 0 0 -V2
24 0 0 V2

Unlike the case of a fixed block effect, in this case of a random block effect, it must be
considered the value of the ratio ¢= o%/ o’i In general, the ratio ¢ is unknown and should
therefore be estimated from the data. However, since our concerns is merely in the
performance of an experimental design, according to the various values of ¢ with an
appropriate size ({=0~1.0), computations are made of the maximum, the minimum and the

cuboidal average of prediction variances - CVZ,,(#), CVE. (), C V,,B,,g( ), CVeu (P, CVY. (1)

and C Vgg( 7) - resulting from blocking and unblocking, respectively, for the basic design and
several blocking arrangements described in Table 2. We have tried to depict the blocking
effect graphs for several blocking arrangements against varying ¢. As the results, we have

found that these quantities for each blocking arrangement increase gradually as ¢ increases
and these gquantities resulting from unblocking for each blocking arrangement are always

greater than or equal to those resulting from blocking. That is, Var 7,( x)1= Var 7]:,( 2]



750 Sang Hyun Park

against varying ¢ in the presence of a random block effect. This result is opposite to the
case of a fixed block effect. Thus, we shall consider only in the case of a fixed ¢=0.5,

because it has revealed to have a similar tendency for all the values of ¢&.

Table 2. Division of the experimental runs described in Table 1
for the blocking arrangements

Blocking Block 1 Block 2 Block 3 Block 4
arrangement

1, 2,5 3,4, 7 13,14,15 19,20,21
1 6,11,12 8, 9 10 16,17,18 22,23,24
3,4, 5 910,11 1, 2, 15 7, 8, 21
2 6,13,14 12,19,20 16,17,18 22,23,24
2,3 4 8 9 10 1,14,15 7,20,21
3 5 6,13 11,12,19 16,17,18 22,23,24
1,2 3 7,8 9 6,14,15 12,20,21
4 4, 513 10,11,19 16,17,18 22,23,24
3,45 7,8 9 1, 2,15 19,20,21
5 6,13,14 10,11,i2 16,17,18 22,23,24

1, 2 3 4 13,14,15 19,20,21

6 56,7 8 16,17,18 22,23,24

9,10,11,12

It should be noted that blocking arrangement 6 is orthogonal, as can be verified by
applying Box and Hunter’'s(1957) conditions. But the other blocking arrangements are not
orthogonal. It also should be noted that blocking arrangement 1 ~5 have the same number of
blocks and the same block sizes as in the basic design, but the allocation of experimental
runs to the blocks is not the same. Figure 1 ~7 show the blocking effect graphs for several
blocking arrangements with a random effect against a radius 7 in a cuboidal region when
¢=0.5. The BEGs show the dispersion in the prediction variances resulting from blocking
and unblocking, respectively, as a radius 7 increases. From these Figures, we can clearly see
the overall change of the block effects for each blocking arrangement as a radius 7 varies.
On the whole, the BEGs of all blocking arrangements show serious dispersion as 7 moves

beyond about 0.6, particularly at the design perimeter and each quantity resulting from



Evaluation of the Block Effects in Response Surface Designs with Random Block Effects 751

unblocking is always greater than or equal to that resulting from blocking.

From Figure 1, the BEG for the basic design shows that each quantity - the maximum, the
minimum and the cuboidal average of the prediction variances resulting from blocking and
unblocking, respectively - is same as a radius 7 increases. This means that for this basic
design, blocking causes no change in the prediction variance. But unlike in the case of a
spherical region, their dispersions occur seriously as 7 proceeds towards the design perimeter.
From Figure 7, we can find that though blocking arrangement 6 is orthogonal, each quantity
for this blocking arrangement is not same because of the different block sizes as a radius #
increases.

6.0

5.5+

—— MAXIMUMC UNBLOCK ING)
5.0 —— AVERAGE
—— MINIMUM
4.5 --=- MAXIMUM( BLOCKING)
~=----- AVERAGE
------- MINIMUM
4,04

CV(r)

2.0+
1.5+

1.0+

@.5- //___{_..

Figure 1. Blocking effect graph for the basic design with a random
effect against a radius 7 in a cuboidal region (¢=0.5)

From Figure 2 ~6, comparing the non-orthogonal blocking arrangements 1 ~5 which have
the same number of blocks and block sizes, we can see that none of all blocking
arrangements show dispersion near the design center, and blocking arrangement 4 minimizes
the overall change in the prediction variance throughout all experimental region. That is, we
can find the fact that blocking arrangement 4 is more effective than the others in terms of
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prediction variance.

6.0
5.5
——— MAXIMUMC UNBLOCK ING)
5.0+ —— AVERAGE
——— MINIMUM
4.5 wmme=—- MAXIMUMC BLOCK ING)
------- AVERAGE ;
+==-=-- MINIMUM
4.0
3.6
<
;3.0—
@
2.5
2.0
1.6
1.0
9.5
Q.9 T T T T T T T T ¥ - T T T T T
2.2 0.2 Q.4 0.6 2.8 1.0 1.2 1.4

Figure 2. Blocking effect graph for blocking arrangement 1 with a random
effect against a radius # in a cuboidal region ({=0.5)

6.0
5.5+
——— MAXIMUMC UNBLOCK ING)
£.024 ——— AVERAGE
—— MINIMUM
4.54 MAXIMUMC BLOCK ING)
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cmmemes MINIMUM
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3.54
[
;3.0—
&
2.5+
2.0
1.6
1.0
9.5
2, 04—m—————r———T—T————F——— T T—T—— T
0.0 2.2 2.4 0.6 2.8 1.0 1.2 1.4

Figure 3. Blocking effect graph for blocking arrangement 2 with a random
effect against a radius 7 in a cuboidal region ({=0.5)
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4.5 nAxmumc BLOCKING)
~==-=-- AVERAG
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Figure 4. Blocking effect graph for blocking arrangement 3 with a random
effect against a radius # in a cuboidal region (¢£=0.5)
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4.5 =====- MAXIMUM( BLOCKING)
) =----- AVERAGE
==---- MINIMUM
4.0
3.5
«
i:ﬁ.@—
|
2.6
2.0
1.6
1.8
8.5+ -
8.9 T T T T T T T T y T T T T T
2.9 2.2 2.4 2.6 2.8 1.0 1.2 1.4

Figure 5. Blocking effect graph for blocking arrangement 4 with a random
effect against a radius 7 in a cuboidal region (£=0.5)
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Figure 6. Blocking effect graph for blocking arrangement 5 with a random
effect against a radius 7 in a cuboidal region ({=0.5)
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Figure 7. Blocking effect graph for blocking arrangement 6 with a random
effect against a radius # in a cuboidal region ({=10.5)
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Figure 8 shows the graph of differences between the cuboidal average unblocking variances
and the cuboidal average blocking variances for several blocking arrangements with a random
effect against the radius # in a cuboidal region ({=0.5). Comparing the BEGs of the basic
design and blocking arrangements 6 which are orthogonal, we can see that the BEGs of these
two blocking arrangements appear to be in a straight line which have the constant values as
a radius 7 increases, and particularly the difference for the basic design is zero as a radius 7
increases. This means that for this basic design, blocking causes no change in the prediction
variance at all points of the experimental region. But we find that though blocking
arrangement 6 is orthogonal, the difference for this blocking arrangement is not zero because
of the different block sizes. From Figure 8 we can also find that the BEG for blocking
arrangement 1 appears to be highest at the center of the design region.

arana BASIC DESIGN

a. 14 —~———+ BLOCKING ARRANGEMENT
) swweo BLOCKING ARRANGEMENT
- »ewews BLOCKING ARRANGEMENT
—— BLOCKING ARRANGEMENT
B.124 « mmee-- BLOCKING ARRANGEMENT
+ — — BLOCKING ARRANGEMENT

CTOALON—

Figure 8. Graph of differences the cuboidal average unblocking variances and the cuboidal
average blocking variances for several blocking arrangements with a random
effect against a radius 7 in a cuboidal region (£=0.5)

5. Conclusions

In this paper, a graphical method has been proposed that allows us to evaluate the effect of
blocking in response surface designs with random block effects over cuboidal regions. The
proposed graphical method can be used as a useful tool for evaluating the effect of blocking
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in response surface designs with a random effect in terms of prediction variance when a
region of interest is cuboidal. That is, in the presence of a random block effect, through the
blocking effect graph, we can investigate more clearly the overall variation of the prediction
variances throughout the entire experimental regions of interest when this region is cuboidal,
and compare the block effects in the cases of the orthogonal and non-orthogonal block
designs, respectively, and hence we can clearly see that to choose which blocking arrangemernt.
in the same experimental runs with a random block effect is most effective in terms of
prediction variance when a region of interest is cuboidal.

As the extension of this paper in addition to the prediction variance, it is also interesting to

depict the design’s performance over the region of interest on bias to model misspecification.
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