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Nonparametric Test for
Multivariate Location Translation Alternatives

Jong-Hwa Nal)

Abstract

In this paper we propose a nonparametric one sided test for location parameters in
p-variate( p=2) location translation model. The exact null distributions of test
statistics are calculated by permutation principle in the case of relatively small sample
sizes and the asymptotic distributions are also considered. The powers of various

tests are compared through computer simulation and the p-values with real data are
also suggested through example.
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1. Introduction

Let X;,X,,,Xgnd Y., Y,, -, Yhe p-variate two samples from X and Y populations

with continuous distribution function F and G, respectively. We assume that for all xeR?,
there is a 8= R? such that
G(x) = F(x—0)
e, the p-variate location translation model. Sometimes we are interested in testing the
following hypotheses:
Hy: 6,<0y, 0;,<0x, -, 0,<0yv.s. H: atleast one of 8, s is larger than G4

This is the so-called one sided testing problem for multivariate data. As an example, suppose
that a laboratory has developed a medicine which may have effects on two symptoms
simultaneously. One can draw a decision that this medicine is acceptable if it become effective

for any one of two symptoms or for both. In this problem, the alternative under consideration
can be formulated as

H,: at least one symptom may be cured.

In spite of those applicability of one sided test procedure, the developments have not been so
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fruitful. Bhattacharyya and Johnson (1970) considered the one-sided alternatives for the
bivariate case based on the concept of two-dimensional layer ranks which were introduced by
Barndorff-Nielsen and Sobel (1966). Boyett and Shuster (1977) proposed a nonparametric test
procedure which is a maximal f#-statistics and applied the permutation principle to obtain the
null distribution function. However they did not provide the normal approximation for the
large sample case. Wei and Knuiman (1987) considered the one- sided alternatives for
censored data by specifying the alternatives based on the so—called stochastic ordering of the
distribution functions. The test statistic was constructed by defining signum function for the
pairs of observation vectors. Therefore the test statistic can be considered as an extension of
Gehan test. However even for the small sample case, the exact null permutation distribution
of the test statistic cannot be obtained. Therefore the derivation of the large sample
approximation to the normal distribution becomes obvious. Up to now, the main obstruction
has been the nonexistence of the table for the p-variate normal distribution functions. For the
bivariate case, Owen (1962) published a book which contains the bivariate distribution
functions for varying the values of correlation coefficient. However the tables are not
sufficient since they can not contain all the values of the correlation coefficients. Therefore in
this paper we propose a test procedure and consider the large sample approximation by
obtaining the tail probability of the multivariate normal distribution.

2. Test Statistic and Small Sample Test

Let 7T; be a univariate nonparametric test statistic for the i-th component for testing
Hy §;= Gyfor the two-sample problem. Since we are interested in dealing with the locally
most powerful test procedures, 7T, s are not required to be the same type. For this problem,
we use the maximum value among the p univariate test statistics. Therefore we will consider
the standardized form for each component. Let #,(6 p)=Ey (T,)and X(6y) = Vi, (T:)be the
mean and variance of T; under Hj, respectively. Then we propose a test statistic for testing

H, against H; in the following way:

Q= max TI“EHO(Tl) TZ_EHO(TZ) . Tﬁ‘EHo(Tp)
VE(T) 0 VKT 0 VIE(T)

Then the testing rule would be to reject Hy for large values of €. For reasonable sample

sizes, we may obtain the null distribution for @ based on the permutation principle. The
procedure for obtaining the null distribution function for multivariate data based on the
permutation principle is well summarized in Puri and Sen(1971). However, for large sample
sizes, we have to consider the large sample approximation.
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Example
The following data is a part of the Actual Ordnance Survey (Mardia, 1980).

X (58 - (5 B

Then the corresponding rank matrix of the combined sample is

Rs=(3 5 1 54

Case I (Wilcoxon rank sum tests for both 7] and T5)
We deal this problem with Wilcoxon rank sum test. Then for each i we have
T, =3+2+4 =81 T,=1+5+4=10
Since Eg(T) = n(m+n+1)/2 =all Vy(T;) = mn(m+ n+1)/12 =w8 have
T, — Ey(T)) T;—~ Ey(T)
_ 2 2 — V_ = f
Q max \/T/Ho( Tl) , WHO( Tz) max {0, 1/V3} 1/v3

In order to perform the test procedure, we need the exact null distribution of . This can be

obtained from the null permutation distribution of (7, T3) Then by applying the permutation
principle (cf. Puri and Sen, 1971), we obtain that under H,,

PT,=6, T,=9} = /I T,=17, T,=12} = 1/10

P{T\=8, T,=8} = L/IW{T,=8, T,=10} = 1/10

P(Ty=9, T,=6} = L/I{T,=9, T,=10} = 1/10

KT,=10, T,=8} = /I T,=10, T,=9} = 1/10

P{T\=11, T»=11} = /R T,=12, T,=T} = 1/10
Then some straightforward calculations show that under Hj,

P{Q=—1/V3} = 1/10P(Q=0} = 2/10 P{Q=1/V3} = 4/10
P{Q=2/V3} = 1/10 P(Q=V3} = 2/10

Since the testing rule is to reject H for large values of @, the p-value would be 7/10.

Casell (Median test for 7, and Wilcoxon rank sum test for T)

For the same example, we consider median test for the first component and Wilcoxon rank
sum test for the second component. The median test statistic is obtained in the following
way: Let M= [(m+#n)/2]+ where [ -] is the greatest integer. Then the median test
statistic is the number of observations of Y sample whose values are greater than or equal
to M. Then straightforward calculations give the following joint null permutation distribution
of (Ty,Ty)
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P{T,=1,T,=9} = /10K T,=1, T,=10} = 1/10
P(Ty=1, T,=12} = /I{T,=2, T,=6} = 1/10
P(T,=2, T,=8} = 2/10P{T,=2, T,=9} = 1/10
P{Ty=2, T,=10} = /1 T,=2, T,=11} = 1/10
P{T,=3, T,=T} = 1/10

Thus Eyp(7T)) = 1.8 and Vy(T;) = 0.36and

Tl - EHU( Tl) Tg - EHO( Tg)
VVa(T) V(T

= max{1/3,1/V3} = 1/V3

¢ = max

Since, under H,, the exact distribution of @ is

P{Q=0} = 1/10 P{Q=1/3} = 4/10 P{Q=V3/3} = 2/10
P{Q=2V3/3} = 1/10 P{Q=V3} = 1/10 P{Q=2} = 1/10

we see that the p-value for rejecting Hy is 5/10.

3. Large Sample Test and Asymptotic Properties
3.1 Large Sample Test

For this section, we assume that

}éﬂmN: 4 KA1 (N=m+n)

and T{i=1, -, pis linear rank statistics. Puri and Sen (1971) showed with above condition

that under H,, the joint distribution of

, Tl“EHo( T)) T2~EH0(T2) Tp—EHO(Tp)
Q= 7z , 2 17z
V(T Vi(Ts) Vi T,)

converges in distribution to a p-variate normal distribution with (0 mean vector and

covariance matrix &, where

i L12---L1p
5= |Pa Loy

Onom...1
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with  p;=p 5, (T;, T;is the correlation coefficient between i-th and j-th components for
each 1#j We note that for the asymptotic normality, we may use any consistent estimate
0 instead of 03

Since for any real number gq,
Tl_EHO(Tl) < TD*EHO( Tp)
VIE(T) T T VIE(T)

the limiting probability of P{@Q< ¢} is the tail probability of the p-variate normal

PQ<g} =P sq

distribution with ( mean vector and covariance matrix X with the same values of all
coordinates. Therefore in order to calculate the limiting probability of P{Q < g}, we need the
values of p Ho( T;, T)'s For this, we only consider the bivariate case since the extensions to
the multivariate case become straightforward by considering all the possible pairs among the
coordinates. Also we note that for the permutation correlation coefficient, o Ho( Ty, Ty) it is

enough to consider the permutation covariance, Cov y (T, T5) Let

(rtl) 72(z> 3(3) r(%))

be a rank matrix which is obtained from the rank matrix Ry by permuting its columns.
Chatterjee and Sen (1964) provided the formula for Cov Ho( T, T,) between Wilcoxon rank

sum statistics as follows:

Cov (T, T = ety (=23 ) (0 - 25L)

For example, when the rank vector is ( ;1 ), i=4 and #({)=Tn the above formula.
Especially, we note that in case of the independence among all the components,
T;— Ey(Ty)
PlQ<g) = ﬂp——“— ~ 0(g)

where @( ) stands for the cumulative standard normal distribution function. In this case, the

determination of ¢ becomes easy.
Example(continued)

Case ]

We note that for small sample case, we do not need any covariance between T and T

However for large sample case, we showed that Q' converges in distribution to a bivariate
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normal distribution with mean (0, 0) and variance X = (L pllz)with
21

P2 = COVHO( Ty, Tz)/\[ VHO( Tl) VHo( Tz)

Therefore we need to calculate py; with using the null distribution of (7, T3)under H.

For this we note that
Ey(ThT,) = (54+84+64+80+54+90+80+90+121+84)/10 = 80.1
Thus we obtain that
 COVy (T, Ty = Eg(T1To) — Ex(T)ER(T,) = 80.1—-81 = —0.9
Then we obtain that

o= Ty 3 03

(We note that the above results for COV g (T, Tp)and p); can be directly calculated from

COVHO( Tl , Tg) 0.9
3

Chatterjee and Sen’s formula described in this section. That is, for the given data, we obtain

Cov Ty, T) = =57 S(i=9(r(D=3) = —9/10 ad pp= —0.3

These coincide the results calculated by exact null distribution of (T, T,) Hereafter,

including Section 4, we will use the Chatterjee and Sen’s formula to obtain the exact null

covariance of (T, T,) because the permutation principle needs very tedious calculations for

moderate or large sample size.)

(T\—En(T)) (T3—Eg(Ty)
V(T 7 V(T

Thus the distribution of { c}onverges in distribution to a

bivariate normal distribution with (0,0) mean vector and X = (1_0_30 ’.?)Then the p-value

for Q can be calculated by P{Q>1/V3} =0.5169.

Casell :

By applying similar method to Casel, we can obtain the followings. That is,
Q = max{ 1/3, 1/\/§}=1/\/3_, EHD( Tl Tz) = 15.6 ﬁmfyo( Tl. Tz) = —0.6. Therefore
o = —0.6/V(0.36)3 = —0.6/(0.6V3) =. —1/V3Thus the distribution of

(Th—En(T)) (T,-En(Ty) e o
{ V(T , VT, converges in distribution to a bivariate normal

1 —1/V3

distribution with (0,0) mean vector and X = (-*1 3 1)So the p-value for € can be

calculated by P{Q=1/V3} =0.5439.
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The computations of the tail probability for the bivariate normal distribution may be carried
out through computer program such as the pmunorm function which is provided by S-Plus.

For d-variate case with d=3, we may use the My program (Neale, Xie, Hadady and Boker,

1998) to obatin the p-values. By using this program, we can computer the multiple integrals
of the multivariate normal, up to dimension 10. The program and documentation can be
downloaded from the website http://www.vipbg.veu.edu/mxgui.

3.2 Asymptotic Properties

In order to deal with the asymptotic properties for our proposed tests, we note that the

test statistic @y consists of ¢ number of univariate nonparametric test statistics. Therefore
some asymptotic properties of &y would be inherited from those of univariate nonparametric
tests. We may take the consistency of tests as an example. For each 7, let (T,) be a
sequence of a-level tests of Hy#d;<6; which is consistent against the alternatives
H:6,>0;. Then the consistency of the tests based on the sequence (Qy) follows
immediately. Also the optimality property such as the locally most powerful test based on @y

will follow naturally if a test for each component based on 7Ty is locally most powerful.
For the limiting power of our test, we consider the following Pitman translation
alternatives: For each N and for each i, i=1,..., fet
Hyy: 0= ci/ \/J—V
where c¢; is a fixed positive real number. We assume that all the univariate test statistics
which we consider in this paper satisfy the assumptions and conditions in the section 3.8.3

(pp. 120-121) in Puri and Sen (1971). Then from some straightforward calculations, we have
the limiting power of the test as follows:

on610) 1i(61w) — 11 6)

lim Po,(Qn>Cx@) = 1= im0 Ci(@)

ol gwi’( ) 61,:5( 51N)) N( )
o, 6120 My HpN —Hy 9w
...,CN(G) O'pN(ﬁpN) GpN(HpN) )

= 1-0(C(a)— cym, ..., Cla)— ¢,m,)
where @5 is the p-variate normal cumulative distribution function with  mean vector and
covariance  matrix 2. Cla) is such that Il\}rrolo PQv=C(a)} = a and
m; = }\}an#w'(en)/(mdw( 82)) and pal8y), o(8p) are the expectation and variance of

Ty under Hy 8;= Gyfor all i.

Bhattacharyya and Johnson obtained the efficacy for their test statistic Ly, under the
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Pitman translation alternatives. We note that the limiting distribution of Ly is univariate
normal. However, as we already have seen, the limiting distribution of @y is related with the

multivariate normal distribution. Therefore the comparisons of the performances between two
tests through ARE are not clear without any theoretical results concerned with asymptotic

null distribution of Qp. Therefore we compare the power through the computer simulations in

the next section.
4. Simulation Results

4.1 Battacharyya and Johnson’s Test

Let us briefly introduce the nonparametric test proposed by Bhattacharyya and

Johnson(1970) for the one-sided bivariate location translation alternatives
K:6,=0,0,=20(060+0)Let {Z,,Z5,".Zpps Zp+1,""» Zm+hg the combined samples of m’'s
X samples and n's Y samples. Let N=m+sand Z;,=(Z,, Z;») Define

(1, Za2Z.Zp>Z,
L(z j) = {O, othemjz'se

and
L,-=2L.'1L(i, ), 1<i<N, 1<j<N,L=(L,, ...,Ly).

Then L; is called the 3rd quadrant layer rank of Z; in the combined sample {Zi, ..., Zx}

Bhattacharyya and Johnson(1970) suggested a test statistic Ly by
Ly=Nw 3 Li-(-w) L1, w=m|N.
They also showed that the null distribution of L, is given by
Ly=L fflz—lz‘”? — N, D),

where /; is the observed value of the 3rd quadrant layer ranks and 1= 231;/N.

4.2 Power Comparisons

We compare the powers of @y with those of Ly, which is based on the layer ranks
through simulation studies involving two different bivariate distributions, the bivariate normal
distribution (Table 1) and the exponential distribution (Tables 2 and 3). In case of Qy, we

only consider the Wilcoxon rank sum statistics for both coordinates. For the normal



Nonparametric Test for Multivariate Location Translation Alternatives 807

distribution, we consider the cases of three different correlation coefficients, p=0 0.2 and

0.5 For the exponential distribution, we consider following two different cases: One is that
two components are independent (Tables 2) and the other, so-called Marshall-Olkin type
bivariate exponential distribution (cf. Barlow and Proschan 1975) (Tables 3). Also we consider

two cases for each distribution that the location translation vector, 6= (8,, 8;¥aries with the
same values of &, and &, and @, varies while &5 is fixed as Q.

For each distribution, simulations have been carried out under the nominal significance level
a=10.05The results are based on 1000 simulations with sample sizes m=15and #»=20for
each distribution. For the language, we used S-Plus 4. Especially, for obtaining the quantile

points required when we determine the critical values, we used pmvnorm function of S—Plus.
From Tables 1, 2 and 3, we see that the two tests reveal little difference in powers in case

of the same values of #; and 0, . However, we note that for the case that one is fixed
while the other varies, our procedure is much superior to the that based on Ly for all
distributions. Also we note that in case of both types of the exponential distributions, the
powers based on @y and Ly are much better than those of normal distribution since the

both procedures are nonparametric. Therefore our proposed test can be a good alternative to
the test by Bhattacharyya and Johnson.

Table 1. Bivariate normal distribution

Test (8,, 8;) Location Translation
statistics | © | (0,0) (0.30) (0303) (060 (0606 (09,0 (0909) (120 (1.2,1.2)
Qn 0 | 0047 0.194 0266 0486 0688 0781 0957 0943 0.997
Ly 0 | 0055 0116 0293 0280 0671 0499 0948 0687 0.99%

Qn 02 | 0048 0182 0240 0480 0649 0778 0945 0943 0.999
Ly 02 | 0055 0107 0271 0275 0652 0442 0898 0618 0.99
QN 05 | 0047 0167 0266 0465 0689 0.781 0958 0951 0.997
Ly 05 7 0053 0106 0233 0231 0588 0374 0.882 0608 0979

Table 2. Independent exponential distribution

Test (8,, 8) Location Translation
Statistic 0,00 (03,0 (0303) (06,0) (0.6,0.6) (09,0 (0909) (1.20) (1.2,1.2)

Qv 0.048 0274 0457 0661 0868 083 0987 0973 0998

Ly 0.048 0219 0523 0455 0916 0635 0991 0.785 1
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Table 3. Marshall-Olkin’s bivariate exponential distribution

Test (8,, 6,) Location Translation

Statistic | (90) (0.30) (0.30.3) (060) (0.606) (09,0) (09,09 (1.20) (12,1.2)
Qv 0051 0662 0843 0976 099% 1 1 1 1
Ly 0051 0334 0873 0746 0997 088 1 0962 1

5. Concluding Remarks

In this section, first of all, we consider some variants of the one-sided test and briefly
discuss to modify the test procedures for the variants. For the simplicity of arguments, we
confine our discussion to the bivariate case. The extensions to the multivariate cases are only
notational matters and straightforward. Now we consider the following hypotheses:

() Hy: 61=0y, 6,=0y v.s. Hy: at least one of 0;'s is strictly smaller than Oy
(i) Hy: 8,< 0y, 0320y v.s. Hy: 61> 6y or 6, 8y or both.

For case (i), by switching the roles of two samples, still we may use the maximum
between two univariate test statistics. Or if the roles of two samples are maintained, then we
may use the minimum. In any case, we note that we may draw the same conclusions. For
case (ii), we may use the reversed rank system such as we assign 1 for the largest
observation and N, the smallest one when we use the Wilcoxon rank sum statistic. Or we
may count the observations which are less than or equal to a median from the combined

sample in case of the median test for the second part of hypotheses. Then the rest of the test
procedures remains unchanged.
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