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Some Asymptotic Properties of
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Abstract

A dimensionality assessment procedure DETECT uses the property of being near
zero of conditional covariances as an indication of unidimensionality. This study
provides the convergent properties to zero of conditional covariances when the data is
unidimensional, with which DETECT extends its theoretical grounds.
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1. INTRODUCTION

A dimensionality assessment procedure DETECT (Kim (1994) and Kim (2000)) makes use
of the conditional covariance of being near zero as an indication of unidimensionality of the
data in the Item Response Theory (IRT). Under the assumptions of the traditional IRT,
conditional covariance of a pair of items is zero when data is unidimensional. However, due to
the unreliability of the condition for the finite length test, the estimated conditional covariances
often turn out to be non-zero even with unidimensional data. This paper studies convergence
to zero of the conditional covariance under unidimensionality as the test length goes to
infinity, which strengthens the theoretical background of DETECT.

The next section briefly explains the IRT framework and DETECT and the following states
theorems with their proofs. Then the final section concludes by presenting the possible and
related use of the results and future work relevant to this study.

2. AN ITEM RESPONSE THEORY MODELING

The IRT modeling attempts to describe the manifest probabilities of an observable variable
X, by an underlying model for a possibly vector valued latent variable ®. Given enough

data we observe the probability of a particular response pattern x of a test having # items,
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P(X=x)= P(X,=x,,...,X,=%,). Then the model tries to reconstruct these manifest
probabilities through an informative model detailing how responses depend upon an examinee’s
latent ability ®&. We denote this latent variable model as (X, ®) and 0 as a realization of
®. For convenience, we consider this modeling only for the case of dichotomously scored
(0/1) items, ie, for i=1,...,n, x;= 0 for the incorrect answer or 1 for the correct
one. A complete model for the manifest distribution of X is given by specifying for all
values of @, the density function f(é), and the joint vector response functions (X = x|8)

such that for each x the following equation holds;
PX=x= [..[PxI0)A6db.

Moreover, for a given @, the probability P8) of answering an item X, correct is denoted
P(6) = P(X;=1|6) = E[X;|6] and called the item characteristic curve.

In order to make the model statistically illuminating and psychologically meaningful,
definitions of local independence, monotonicity, and dimension are included.

Definitions 1. A model (X, ®) is locally independent (LI) if for every given 6 and every
response vector x
P X=x|0) = P(X|=x,...,X,=x,10)
= I P(X ==, 16).
2. A model (X,®) is said to be monotone (M) if X;=1,....X,=1160) is

nondecreasing in 6 for each subset (7;,...,7) of (1,...,n). The model is said to be
strictly monotone if nondecreasing is replaced by strictly increasing.

3. A model (X, ®) is said to be @ dimensional (d=1) if ® is a d dimensional random
vector.

Testing the LI assumption is equivalent to testing the assumption of unidimensionality when
LI is assumed. If a d=1, LI, and M model yields rejection (lack of fit), and if we insist on
M, either LI or d=1 must go. It is the modeler’s choice to decide which way to go on this.

One straightforward and theoretically sound approach to investigate the possibility of
multidimensionality is to consider covariances of disjoint subsets of items after conditioning on
a reliable substitute for the latent variable. For instance, one might consider the conditional

covariance of a pair of items. For a pair of items, X, and X, under the local independence
Co(X;X;16) = P(X;=1, X;=110) — X,=116) (X;=116) =0
due to the factoring of joint conditional probabilities into products of marginal conditional

probabilities. Thus, requiring that Cov(X,, X;|0) =0 is a necessary but not sufficient
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condition for LI, and consequently any investigation that reveals that for some @,
Cov(X;, X;|6) # 0 succeeds in discovering a violation of LI. Of course, the latent variable 8
cannot be observed and one is forced to examine conditional covariances where the
conditioning variable is a suitable substitute for 8. A large body of theoretical research has

focused on the adequacy of observable statistics such as total score as substitutes for € in
examining conditional covariances.

It is assumed that a test is composed of disjoint clusters that are dimensionally distinctive
from each other and each cluster is dimensionally homogeneous. Then it is conjectured that
the conditional covariance estimate of an item pair given score of the remaining test is
positive or negative subject to whether two items in the pair belong to the same cluster or
not, respectively. The index DETECT by Kim (1994) combines non-zero second order
conditional covariances of item pairs evidencing violation of unidimensionality by adding
conditional covariances when two items come from the same cluster and subtracting
conditional covariances when two items come from different clusters. That is, for an (7, 7)
item pair

| 1 Covem Con
DETECT = (n) g;)( 1) °"( Cov;— Cov)
2
where summation extends over all item pairs and &, is determined to be () when two items

belong to the same cluster or 1 otherwise. Note that the average "Cov is the overall mean
of covariances and the subtraction is introduced to extract off the bias occurred possibly in
the unidimensional case (Kim, 1994). Also it is obvious that the maximum DETECT occurs if
the correct cluster formation is utilized.

A primary objective of dimensionality assessment is to identify dimensionally homogeneous
item clusters if exist in a test. DETECT makes an attempt to identify such clusters and to
quantify the amount of the lack of unidimensionality present in the test. A large body of
research has shown good performance of DETECT. For details, see Kim (1994). More
theoretical and applied consideration relating to DETECT 1is also given in Zhang and Stout
(1999).

The following section focuses on the convergence properties of conditional covariances
employed as building blocks of DETECT especially when the data is unidimensional.

3. ASYMPTOTIC PROPERTIES OF CONDITIONAL COVARIANCE
WHEN d=1

The aforementioned equality Cou(X;, X;|6) =0 holds under the conditioning on the true
ability &. Holland and Rosenbaum (1986) examined the conditional association as an

observable stand-in for @ is utilized for the condition. Making use of Holland and
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Rosenbaum’s theorem, the following inequality is directly resulted when conditioned on an
observed proportion correct score S out of #— 2 items after deleting items X; and X;.
That is, under the condition of LI and M
Cou(X; X;|IS) =20
for i#7.
Strict inequality is given when the model is strictly monotone; Cou(X;, X;IS) > 0 for
i+ 7, under the condition of LI and strictly monotone. This strict inequality is unfortunate,

because zero or very close to zero conditional covariance is more desirable, but of vital
importance. However, as the test length approaches infinity, the sum score on the remaining

items becomes more reliable and a better ordinal estimate of @ ensuring that items X, and
X, are asymptotically uncorrelated given the score on the growing number of remaining
items.

Assume that there is an infinite item pool {X;, 7= 1}. Suppose that for fixed # the all
item characteristic functions PJ{68), i=1,...,n, are differentiable. Also, suppose that there

exist an interval [a, &], and real numbers 6> 0 and C< o satisfying, for all 8 [a, b]

and 7,
Ao = ¢, (D
PO = ¢, (2)
P(o) < C, 3)
P(6)(1 —PL(8) = 6. (4)
For fixed n, let J,, k= 0,...,n— 2, be the number of examinees in the ky cell of a

partition of examinees based on the score S. In particular, assume that each partition contains

“‘enough’’ examinees so that asymptotic properties are applicable. Let 9/5") be defined by

E[S|o=6"] = nf 5 for fixed » and 4. Suppose, for all %, that
0" € (a—8,b+9). (5)
Suppose there exists ¢ > () satisfying
min
0<k<n—2 7t S . ©)
max Ji -
0<k<n—27*
for all », and
min R
as »n goes to infinity. Suppose
max Tk

n
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as »n goes to infinity. Let J (n) represent the total number of examinees taking an # item

test and define s,= n—f— . The above equations (1)-(8) and conditions can be considered

2

as the regularity conditions in the IRT under which the coming convergence has meaning

practically.

Proposition (Stout, 1987) Fix %, and # and assume the conditions (1)-(8) hold. Let constants
a, satisfy

nl'<a,<Cn m12
Then

C exp(—nx?/4)
an(nl/Z a,— n —1/2)

P10 67> 25 |5=5,) <

for all a, < x < (logn) "% and §.

The next theorem assumes the properties given above, and concerns the convergence of
conditional covariances as the test length and sample size approach infinity.

Theorem 1 If a model (X, @) is unidimensional and locally independent and if (1)-(8) hold,
then for any fixed % and for fixed 7=+ J

(J, m) V2 Co(X;,X;1S=s) — 0
as #» goes to infinity.

Proof By observing that for any &, k=0,...,n—2,
Co(X;, X;1S=s) = E[Cov(X;, X;|0)|S=s4]

+ Cou(E[X;16],E[X;16] | S=s,]

= Cov(PL0),P(6) | S=s,)
by LI and
Cou(P(6), P0) | S=s,) < {Var(P{6) | S=s) Var(P(6) | S=sp} ",
it suffices to consider Var(P{8) | S=s,).
Let 6 =6" and f”(6) be the density function of 8 for fixed # and k, and

EY [P/(0)] = E[P:i(0) |S=s] = [ P(&) 7”(6) db.

Let x = 2—56 and Q7 =[68" —x,8" + x']. Then
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Var(P{6) | S=s4)

I

[P~ E (PO £7(6) db
= | (PAO—EPP(OD* £7(6) dbf
+ f_w(l"f(@)—E(”)[P,-(ﬁ)])2 77(6) do
= V+ W
By Proposition given above, for any a, < x < (logn) —1/2

_ 2
Ce)fg( nx/4)  _ 0,.

an(n'?a,—n %)

W<

Consider V. Now wusing the mean value theorem, there exists §; satisfying
16, — 6| < x' such that
|P(6) — EVLP(O]I = |P(&) = [ P(6) (8 d0 ~ |
J P80 £ dor
fgm £7(6°) do’
<|PL6) ~ PL6y) [, £7(6) a0 | + Q,

<|PL6) = PO [, 77(0) db + 2Q,
< Cx' + 2Q,.
Thus Var(PL6) |S=s) < (Cx + 2Q,)* + Q,.

Now let &, = (J, n) 2 ((cx + 2Q,)% + Q,} for each #. In order to complete the proof it

PL8") f(8") db' |

Q(n) C

< |PL6O) - S F7eds |+ @,

is needed to show that %, — 0 as #» goes to infinity uniformly in k. It suffices to observe
that

Te) Y(x)2 =0, ) 2Q, — 0

as »n goes to infinity, uniformly in 4. Recall x" = 2—8x Taking x = -E‘C?Y/Qﬂ works, for
n
example. lLe,
(]k n) 12 COU(X,‘,XI: l S=Sk) < hn - 0
as #n goes to infinity, uniformly in k. O

Informally under the assumption of unidimensionality, as the test length goes to infinity the
conditional covariance between two items vanishes more quickly than the reciprocal of the
square root of the product of the test length and the number of examinees in the score cell.

Now consider the asymptotic behavior of

7 - N
COU(Xi,Xj|S=Sk) = € - (Xa— Xi|S=Sk)(th_ Xj|5=sk)
Ty =
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as an estimate of Cou(X; X,;|S=s;) when test length #» approaches infinity. Here X

denotes the ¢, examinee’s response for the ¢, item. For fixed k, it only utilizes examinees

in the subgroup of k items correct. Here Y,, [=1,j, denotes the average score on the item
X, [/=1,j, among the examinees in the subgroup, respectively, and the summation extends

over the examinees in the score subgroup. Theorem 2 implies that the expected value of a
weighted sum of conditional covariances, under the assumption of unidimensionality and local
independence, converges to zero fairly rapidly as the test length increases.

Theorem 2 If a model (X, ®) is unidimensional and locally independent and if (1)-(8) hold,

then for a fixed (i,7) item pair
E[ Zz ]{:) Co(X;, X;1S=s)1—0

as »n goes to infinity.
Proof First, consider the conditional covariance only in one partition of examinees for fixed
k. Let Cov;= Cov(X,;, X;|s,= k).

E[ Cj)v\,;] = E[%k g} (Xif_yilstk)(X,'z—le.g:sk)]
- ”%:{i:lE[X,-,X,,IS=sk] — L (Xi1S=s)(X;1S=5sp}

= Cov,
by the unbiasedness of X,,/=1,j, and it shows that Cou( X;, X;|S=s,) is an unbiased

estimator of Cov(X,, X;|S=s,).
Then

E[g% @(Xi,Xj|S=Sk)] = ZZ]kCOU(X,,X | S=35s,),

]( n)

and it can be eXpressed as

]](.n) Zz (’{;’) 12 (]k n) 1/2COU(X,', X,' l S=Sk).

Now, using #, defined in the proof of Theorem 1, the above is bounded by

](n) ;‘Z(jk)l/zh = hy ;2 iz ](n)

1/2 ](n)
_._h_"_
172

— 0




966 Hae Rim Kim

quickly as #» approaches infinity, by Theorem 1 and 1/#, and it completes the proof. []

It easily follows that under the unidimensionality and local independence, the expected value
of DETECT converges to zero as the test length approaches infinity when only one cluster is
applied. Equivalently, one can expect when the test is unidimensional and locally independent
the expected value of DETECT to converge to zero as the test length approaches infinity for
whatever cluster formation is employed. For instance, when a test is unidimensional, the
cluster have no significant meaning because they are formed primarily from random statistical

€rror.
4. CLOSING REMARKS

Two convergence theorems are proved under the conditions of unidimensionality and local
independence. Under the assumption of unidimensionality, as the test length grows the
conditional covariance between two items vanishes more quickly than the reciprocal of the
square root of the product of the test length and the number of examinees in the score cell.
Also the expected value of a weighted sum of conditional covariances, under the assumption
of unidimensionality and local independence, converges to zero fairly rapidly as the test length
increases. These results can be served as a bench mark in the dimensionality assessment
using DETECT. Similar study for the more than one dimension case is possible even though
much more complicated work needed.
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