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Jackknife Variance Estimation under Imputation for
Nonrandom Nonresponse with Follow-ups

Jinwoo Park !

ABSTRACT

Jackknife variance estimation based on adjusted imputed values when
nonresponse is nonrandom and follow-up data are available for a subsample
of nonrespondents is provided. Both hot-deck and ratio imputation method
are considered as imputation method. The performance of the proposed
variance estimator under nonrandom response mechanism is investigafed
through numerical simulation. ‘
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1. INTRODUCTION

Almost all sample surveys suffer from nonresponse. If nonresponse is ignored,
it may cause some bias. Unit nonresponse is customarily handled by weighting
adjustment method. On the other hand, item nonresponse is usually handled
by some form of imputation to fill in missing item values. Since imputation
results in a complete data set, such method allows the use of complete data
methods of analysis. However, after imputation, treating the imputed values
as observed values may lead to serious underestimation of variances of point
estimators (Hansen et al. 1953). ‘ :

Many researchers attempted to get remedies for this problem. Rubin(1987)
proposed multiple imputation(MI) to estimate the variance due to imputation by
replicating the process a number of times and estimating the between replicate
variation. However, Rao(1996) pointed out several drawbacks in MI, such as
high costs for storage, inconsistency etc.. Rao and Shao (1992) proposed an
adjusted jackknife variance estimation under hot-deck. Since hot-deck imputation
is rather convenient and needs smaller data set than MI, many statistical agencies
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prefers hot-deck imputation. Furthermore, Kovar and Chen(1994) showed that
it performs well in many cases.

All the methods cited above have assumed only random nonresponse which
is appropriate when the nonresponse happens at random. To get an appropriate
estimate with nonrandom nonresponse, more information on the nonrespondents
is necessary. Glynn et al.(1993) introduced many possible ways to obtain more
information on the nonrespondents. Furthermore, they applied MI to the mean
estimation when nonresponse is nonrandom and follow-up data are available for
a subsample of nonrespondents. Since MI has some drawbacks as Rao(1996)
pointed out, it seems to be desirable to find method based on single imputation
for nonrandom nonresponse.

The purpose of this paper is to suggest new estimates based on single imputa-
tion method to mean estimation when nonresponse is nonrandom and follow-up
data are available for a subsample of nonrespondents. Section 2 cites the double
sampling estimate with follow-up data and provides a new mean estimator and
its jackknife variance estimator after a single imputation. Hot-deck imputation
and ratio imputation is considered as imputation methods. In section 3, some
numerical study results are briefly outlined. Finally, some concluding remarks
are offered in section 4.

2. ESTIMATION WITH FOLLOW-UP DATA

2.1. The Double sampling Estimate |

Suppose that the initial random sample of size n results in n; respondents
and ng nonrespondents. Since nonresponses are nonrandom, a follow-up random
sample of size ng; is taken from the nonrespondents. Assume that all follow-up
sample data are acquired. The following Figure 1. shows the population and the
sample, where the shaded parts represent sample respondents.

Let § be the sample mean and let s be the sample variance of the sample of
size n, which may contain missing values due to nonresponse. Further, let ; and
s? are the sample mean and the sample variance for the initial respondents, and
701, s%l those for the ng; followed-up respondents among nonrespondents.

The standard estimator for the population mean, Y , of the finite population
is the weighted mean of 4; and ;.

n1g1 + nofor)

o - (2.1)
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Figuré 1. The population and the sample

Cochran(1977) derived the variance of Y , and suggested the associated unbiased
variance estimator for large N and n, which are as follows.

2 1-— 1-k
V(Y) = gn—f)SQ + WQ(—;’,—)S%, (22)
o 1 1.n1 4 g 1.ng 4 N —n ngni,._ NN
sy — (= —y b e Wi At _

where Wy = Ny /N and k& = ngy/n;.

2.2. Estimation after Imputation

Suppose that the initial random sample of size n results in n; respondents and
ng nonrespondents. A follow-up random sample of size ng; is taken from the ng
nonrespondents. Further, an imputation is appliéd to the final nonrespondents,
whose size is ngg = ng — no1. In this case ng, follow-up data serve as doners.

First of all, the estimator of initial respondents mean is the usual mean, 7,
and its variance esimator is usual also. Let 4g; be the average of ng, follow-
up data , and y(jj, 7 € Anis be the imputed value. A,,;; and A,es represent
the sample of nonrespondents and respondents respectively. The estimator of
nonrespondents mean after imputation, gy, is

Jor=0( v+ D, ¥)/no

ieAres jeAmis .

Thus, a mean estimator, E_}], can be written as a weighted average of 4, and go;.
That is,
Yy = w1 + wofor, (2.4)
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where w; = n;/n, i =0,1.

The following theorem shows that the estimator given by (2.4) is unbiased,
and derives the variance of sample mean, Y . The proof of theorem 2.1 is given
in the Appendix.

Theorem 2.1. Suppose that the initial random sample of size n results in nq
respondents and ng nonrespondents. A follow-up random sample of size ngy is
taken from the ng nonrespondents. Assume that oll follow-up sample data are
acquired, and that imputation is applied to the final nonrespondents, whose size
18 Ngo = Ng — No1- Then YI at (2.4) is unbiased, and the variance of it, V(Y]) ,

is as follow.

= W0[1+(7’L—1)W0] W1[1+(7’L—1)W1]

V(Y = - -V (Gor) + - (2.5)
Sz W Wo w-
(Wo(2 - 2220 + —151 +2 (M- V)4 (R - YY)
o n
Since the variance of §o; (Kim, 1997) can be represented as
1 1 1 1 oo oo
= (—— )82+ (— — —)5? 1—-—=
V(%or) o No) ot o1 ﬂo) 0t 2 —5 ( o1 )53,
we can estimate S2 by
&2 V (gor)

1/ng1 + (1 = ngo/no1)noo/n3

Thus, by plugging 52, wg and wy, and V (go;) into (2.5), we can get the following

variance estimator which is an asymptotically unbiased estimator of V(Y).
wp[1 + (n — 1)wo] wi[l + (n — 1)w]

~

VY) = - -V (Gor) + - (2.6)
noi 92  w w -
('wo( - E%l“)—g + —15% + —(yOI — )%+ 71(371 - YI)2)-

2.2.1. Hot Deck Imputation

When hot deck imputation is used, Rao and Shao (1992) proposed the following
adjusted jackknife variance estimator of §jo; , which is asymptotically unbiased.

ng—1 4 N
Vor(HD) = Ono Z (or(—1) — yoz’)za (2.7)
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where the i-th replicate is
(i) = { maa0odor = b0t b e 2ol TLE Aves
m[noyw - in] ifi€ Ay,
andA Z0ji = Yo; + Fo1{—1) — Go1. Therefore, we can get V(l_}f) by substituting (2.7)
to V(gor) in (2.6).

2.2.2. Ratio Imputation

Suppose that an auxiliary variable, z, closely related to an item v is observed on
all sample units, and that the ratio §o1/Zo1 and §p/Z¢ is the same, that is, the
follow-up sample is randomly selected from A,,;s . Under ratio imputation, we
impute the predicted value in place of the missing yo; as follows:

" Yo1
Yoj = — " T0j-
J Zo1

Then the adjusted jackknife variance estimator of ggr is

ng — 1 0 —a . B 1
VoI(Ratio) = 0 Z (or(—1) — or)?, (2.8).
i=1

where the i-th replicate is

nol_l‘ [nodor — g;) ifie Aps.

oo asrinotior — yoi + Ljean, W8 + 2oi)] i 1€ Apes,
Z/oz(*’b) =

and 2051 = ggig) * Loy — % *Toj5 '!jOl (’L) = (77,01?]01 — in)/(nol — 1) and a similar
expression Zgy(i). Therefore, we can get V(Y) by substituting (2.8) to V (Zos).
in (2.6). Furthermore, Rao (1996) suggested a linearized version of as following

vr,(Yor)-

A

EO‘AzﬁBC

_ . 2
—_— _— [ R —_ 2.
wrlion) = (222 2 o2y 24 E (29)
where ‘
el 3701 2
A = (yo — == - 20i)*/(no1 — 1),
1 Zo1
Jo1 < o1
50y 2o~ Gy @oi) i (mon — 1)
gOl & 2
¢ =@ 3 (i 30 no - 1)
01 T

o

So we can also get V() by substituting (2.9) to V(For) in (2.6).
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3. SIMULATION RESULTS

To evaluate the performance of the proposed estimators in section 2, some nu-
merical simulations are considered. Rao and Sitter (1995) suggested the following

model.
yi = Bri + V1, - €,
where
z; ~1(g,h),
e ~ N(0,0?).
Thus,

Py = gh: 0'33 = gh’27 CCC = g:c/:u'o: = 1/\/§a
fy = Bug,0p = 205 + tg0g, corr(zs,y;) = p = fog /0y
We generated 500 samples of size n = 400 units with 5 =1, u; = 100 and choos-

ing 0z, 0y to match specified values of p and C,. The probability of nonresponse
is assumed to be related to the z— variable in two distinct ways:

Py =1-exp(—cprz),
Ps = exp(—csz),

where the constants c; and cg are chosen such that an expected 25(Kovar and
Chen, 1994). In the model, P, implies that large units are more likely not to
respond, and Ps implies that small units are more likely not to respond. The
results are summarized in Table 1 and Table 2 . :

Table 1 provides estimates under the response probability Pr, . All three
estimates - the double sampling estimate, the estimate under hot deck imputation,
the estimate under ratio imputation - seem to give valid estimates. The standard
error (s.e.) of the estimate under imputation is slightly larger than that of the
double sampling estimate, but the difference is negligible. The efficiency of the
estimate under ratio imputation increases slightly as p increases.

Table 2 gives estimates under the response probability Pg which implies that
small units are more likely not to respond. Here also all three estimates - the
double sampling estimate, the estimate under hot deck imputation, the estimate
under ratio imputation - seem to provide valid estimates. The standard error
(s.e.) of each estimate is similar, irrespective of p . The above results implies that
the proposed estimation methods after imputation is appropriate for a nonrandom
nonresponse with follow-ups.
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Table 1. Estimates of the mean when the nonresponse is nonrandom with

response probability Pr.

C,=1.0 ‘ size I mean I s.e. H Cp,=14" ‘ size [ mean ‘ s.e. ’
sample 400 | 102.2 | 6.4388 sample 400 | 108.0 | 9.0410 }
respondents 292 | 73.9 | b.8792 respondents 304 | 59.5 | 6.2653 |
follow-ups 28 | 170.7 | 20.7849 follow-ups 25 | 222.7 | 49.7560
double sampling | 320 | 100.0 | 7.3844 | double sampling | 329 | 98.7 | 13.3199
p=0.7 | hot-deck imp | 101.6 | 9.5855 | p=0.7 | hot-deck imp | 97.1 | 17.0305
ratio imp 107.7 | 9.1095 | ratio imp 114.2 | 16.2186
p =0.8 | hot-deck imp | 101.8 | 9.5733 || p = 0.8 | hot-deck imp | 96.6 | 16.4362
ratio imp 108.1 | 8.5406 ratio imp 112.7 | 14.9481
p=0.9 | hot-deck imp | 101.0 | 8.6875 || p=10.9 | hot-deck imp | 97.3 | 16.0987
ratio imp 106.5 | 7.0786 ‘ ratio imp 112.7 | 13.5987

Table 2. Estimates of the mean when the nonresponse is nonrandom with

response probability Ps.

C,=10 ‘ size ‘ mean | s.e. “ C,=14 ‘ size | mean ’ s.e. —‘
sample 400 | 102.2 | 6.4388 sample 400 | 108.0 | 9.0410
respondents 305 | 126.0 | 7.8527 respondents 289 | 147.2 | 11.683
follow-ups 24 | 28.38 | 8.1404 follow-ups 28 | 5.04 | 3.7673
double sampling | 329 | 102.9 | 6.6266 || double sampling | 317 | 107.8 | 9.0825
p = 0.7 | hot-deck imp | 102.2 | 6.8257 || p = 0.7 | hot-deck imp | 108.3 | 10.0452
ratio imp 101.8 | 6.5933 ratio imp 108.1 | 10.1127
p =0.8 | hot-deck imp | 102.1 | 6.8040 || p = 0.8 | hot-deck imp | 108.1 | 9.1024
ratio imp 102.0 | 6.5950 ratio imp 108.1 | 9.1379
p=0.9 | hot-deck imp | 102.5 | 7.0110 |} p = 0.9 | hot-deck imp | 107.9 | 9.0998
ratio imp 102.5 | 6.4854 ratio imp 107.9 | 9.1283
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4. CONCLUDING REMARKS

In this article, new estimation method after imputation for nonrandom nonre-
sponse have been suggested. Considering on the fact that there were no available
estimation method based on single imputation for nonrandom nonresponse in
spite of the prevalance of single imputation, the work done by this study may
contribute.

The suggested method is appropriate when follow-up data are available on
a random subsample of the nonrespondent. For the ranges of cases considered,
the suggested estimation method works quiet well. New estimate gives similar
performance with the classical double sampling estimate. According to Glynn
et al.(1993), performances of estimators based on MI is similar to the double
sampling case. Hence, it seems that the performances of estimates based on
single(hot-deck or ratio) imputation and on MI are similar. Since there are many
drawbacks in MI, it is recommendable to use single imputation method.

Appendix A: Proof of Theorem 2.1

First, to show the unbiasedness of }_}1 , find the conditional expectation of it
for given n;.

E(Yilm) = EiEa(Y1) = E1Ex (w1 + wolior)
= Ei(w1%1 + wolo)
= w Y] +woYp,

where E; denotes averaging over all possible selections from each stratum and
E5 denotes averaging over all possible imputations from follow-up data. Hence,
averaging over repeated selections of nq,

E(Y;) = EE(Yi|ny)
= E(TUlYl + ’U)()Y/Q)
?IE(U)l) + Y()E(’wo) o

= W1?1 + WO?O-
Next, V():}[) can be written as V(f}[)Az EV(}_}IInl). V(?ﬂnl) can be decom-
posed as V(Y;|n1) = Vi Eo(Y;) + E1Va(Y7), where E; denotes averaging over all
possible selections from each stratum and Fy denotes averaging over all possible
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imputations from follow-up data. The first term on the right is derived as
Va(Yr) = Va(wolor) = wiVa(@or).
E\Va(Yr) = BEr(w3Va(for)) = wiV (for)-
On the other hand, the second term is
ViEy(Y7) = Vi(wiih + woior) E
= (1 — n/N) . 52/n+ Wo(l - ’nol/no) . S(‘)?/n
. Then, by adding the above equations, it can be shown that
V(iln) = EVa¥i+ViEY; ‘
= wi - V(gor) +wi - [(1 = n/N) - 8%/n + Wo(1L ~ noy/no) - SZ/n]
~ wi - V(gor) +wi - [S*/n + Wo(1 — noy/no) - S /n].
Following Cochran(1977), S? can be decomposed as follow.

Sz W W, W, _ _ 7% _ _
_z_1.5%+_0.Sg+_0.(}/()_y)2+_1.(y1_y)2_
n n n n n
So |
V(Yrlm) =~ wd-V(jor) +wt - [S2/n + Wo(1 — noy/no) - S2/n]
~ o wp - V(ﬂoz) +wi - [Wo(l - noy/”o) - S5 /m]
+ w%.[%.sf+%.5§+%.
n n n

(Fo ¥+~ (1~ 7))
Therfore, by averaging over repeated selections of ny, we can show that
BV (Yilm) ~ E(wf-V(gor) +w - [Wo(l = noi/no) - 5§ /n] (@
+ w%-[——-S%+—~-S§+—-(}_’0—Y)2+—Wn—l-()_’1—17)2]).
Since n; is a random variable from hybergeometric distribution, we can say that

E(nl) = n-Nl/N=n-W1
1) ~ ’I’L-Nl/N-(l—Nl/N)
E(n?) V(ni) + [BE(m)]? = nWil + (n — )W)

%

By substituting the above results for (A.1), we can get the following formula.

2 Woll+ (n—1)W _ Will +(n—-1)W
Sz W Wo - = W
Boy20  Plg2  D0g _p)2 4

20 21
n n

(WO(Z - (Y1 - 17)2).

ng ' n n
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