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A Bayesian Method for Narrowing the Scope of
Variable Selection in Binary Response ¢-Link
Regression

Hea-Jung Kim !

ABSTRACT

This article is concerned with selecting predictor variables to be included
in building a class of binary response t-link regression models where both
probit and logistic regression models can be approximately taken as members
of the class. It is based on a modification of the stochastic search variable
selection method (SSVS), intended to propose and develop a Bayesian pro-
cedure that uses probabilistic considerations for selecting promising subsets
of predictor variables. The procedure reformulates the binary response ¢-link
regression setup in a hierarchical truncated normal mixture model by intro-
ducing a set of hyperparameters that will be used to identify subset choices.
In this setup, the most promising subset of predictors can be identified as
that with highest posterior probability in the marginal posterior distribu-
tion of the hyperparameters. To highlight the merit of the procedure, an
illustrative numerical example is given.

Keywords: Binary response t-link regression; Variable selection; Hierarchical nor-
mal mixture model; Data augmentation; Gibbs sampler; High frequency model

" 1. Introduction

The theory of binary dependent variable regression has its genesis in bioas-
say(see, for example, Finney, 1971). In that context, Y; denotes a Bernoulli
random variable with the probability of success p;, i = 1,---,n, where p; is re-
lated to a set of predictors which may be continuous or discrete, and the binary
response regression model is defined as
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where the ¢; is uncorrelated random error with Ee; = 0, X; is a vector of, say, k
fixed predictors, f is a k x 1 vector of unknown coefficients, and H(-) is a known
cdf linking the probability p; with linear structure X]3 so that p; = H(X;5).
Suppose we specify the model (1) by choosing the link cdf H to be the family
of t distributions, the resulting model is called binary response t-link regression
model. A special feature of this model is that probit model is a member of the
family for tos = N(0,1) and logistic model can be approximately viewed as a
ts link model (cf. Albert and Chib, 1993 and Soofi, Ebrahimi and Habibullah,
1995).

At some point during the analysis with the binary response ¢-link regression
model, one may wish to delete some predictors from the model. The search for
the best submodel is called variable selection or subset selection. In recent years,
the use of MCMC simulation techniques leads to develop various Bayesian proce-
dures to handle variable selection for regression problems. Those procedures are
designed to search for promising subsets of predictors stochastically, so that they
avoid overwhelming burden of calculation involved in comparison of all 28 possi-
ble subsets, and allow for variable selection based on practical significance rather
than statistical significance. Among them, stochastic search variable selection
(SSVS) introduced by George and McCulloch (1993), conditional Bayes factor
method by Geweke (1996) and reversible-jump Metropolis-Hasting algorithm of
Green (1994) are prominent. See Dellaportas, Foster and Ntzoufras (1997) and
references therein for other methods. For the selection in binary response regres-
sion models, George and McCulloch (1996) and George, McCulloch and Tsay
(1996) discussed an implementation of SSVS using the adaptive rejection sam-
pling method of Gilks and Wild (1992) and Kuo and Mallick (1997) suggested
implementation of a Metropolis algorithm.

The purpose of this paper is to develop and suggest yet another procedure
fitted to variable selection for the binary response ¢-link regression that allows sign
and interval constraints on regression coefficients. The procedure is an extension
of SSVS of George and McCulloch (1996) in three directions: (i) It reformulates
binary response ¢-link regression setup in a hierarchical truncated normal mixture
model so that it enables implementation of the Gibbs sampling algorithm. This
is achieved by assuming a latent continuous response with a t-distribution and
determining an observed binary response by a cutpoint. (ii) It achieves variables
selection not only for a class of ¢-link models, but for logistic and probit link
models. (iii) It accounts for sign and interval constraints on regression coefficients
as considered by Geweke (1996) in the Gaussian regression.
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In Section 2 we define and motivate the hierarchical framework for the t-link
regression model that serves as the basis for the stochastic search method for
variable selection. Section 3 show how the hierarchical model can be used to
identify highly promising subsets of the predictor variables not only for the ¢-
link regression models, but for the probit and the logistic regression models. A
posterior distribution derived from a data augmentation scheme and a computa-
tional algorithm are also outlined in this section. In Section 4 we illustrate the
suggested procedure on simulated data sets. The last section summarizes and
discusses some possible extensions of this work.

2. Hierarchical Model For ¢ Link Regression

Suppose that we have n binary response observations Y, i =1,...,n, where
E(Y;) = p; which is the success probability corresponding to the i-th observation.
If we set H(-) in (1) as T,(-), the binary response t-link regression model for the

dependence of p; on k explanatory variables vector, X; = (z1;, T2, ..., Tki)', 18
T, Yp) = BXiy, i=1,...,n. (2)
where 8 = (B1,...,08%) is an unknown coefficient vector and T, () is cdf of ¢-

distribution with fixed v degrees of freedom. As a result of some arrangement,

po= ) = (A [ R g,
I'lv/2] —00
Since Y; is an observation from a Bernoulli digtribution with mean p;, correspond-
ing model for the expected value of Y; is E(Y;) = T, (8 X;). For the model (2),
selecting a subset of predictors is equivalent to setting to 0 those f;’s correspond-
ing to the unselected predictors. If an intercept was to be included in the variable
selection (as is usually the case), then one should set z1;, =1, i =1,...,n:
The likelihood function of the model (2) is given by

L) = [Ip—p), W
=1

where p; is defined by (3). The likelihood depends on the unknown success
probabilities p;, which in turn depends on the 8 through (3), so that the likelihood
function may be regarded as a function of 5.

To extract information relevant to variable selection, we consider the following
hierarchical model structure (cf. Bernardo and Smith, 1994). In conventional



410 Hea-Jung Kim

terminology, the first stage of the hierarchy relates data to parameters via (4).
The key feature of the hierarchical model is that each component of 8 is modeled
as having come from a mixture of two normal distributions with a truncated
interval. This is done by introducing a set of latent variables based on the data
augmentation idea of Tanner and Wong (1987). The second stage models can
be simply expressed via the introduction of a set of distinct latent variables {«;
=0orl, j=1,...,k}, so that ﬂ;-s are independent and random samples from
normal mixtures represented by

Bilay ~ (1= )T N{g, <p,<5,3(0,07) + TNy <p,<p,3(0,ch03), G =1,...,k,
(5)
where p(o; = 1) = 1—p(a; = 0) = g; and hyperparameters o5, g;, a; b; and ¢; are
fixed and T'Ny4;<p.<p,}(0,4) denotes the normal distribution N(0,) truncated
to interval a; < f; < b;. In case §3; is not truncated in priori, we may simply set
uj = —oo and b; = oo.

The above formulation shows that, for a; = 0, 8; ~ TN{aJ <B;<b; }(0 02) and
for aj = 1, Bj ~ T'Nyg;<p,<;3(0, cio; 2). It may be interpreted as follows: (i)
In case aj = 0, our choice of small UJ(> 0) implies that f; is likely to be so
small that it could have zero estimate in the constrained estimation space. (ii) In
case a; = 1, our prior judgment about non-zero estimate of 3; being more likely
than zero estimate is captured by choosing ¢;(> 1) to be large. Based on this
interpretation, ¢; may be thought of as the prior probability that 8; has a non-
zero estimate satisfying the constrained interval, or equivalently jth predictor
should be included in the final model. So that if we have a prior belief that 5;
lies in an interval [a;, b;] not including zero, then we may simply set q; = 1.

A similar setup (hereafter referred to as GM) in this context was considered
by George and McCulloch (1993). GM can be viewed as the priors (5) with
a; = —oo and b; = oo. However, their priors differ from (5) in three respects.
First, the present paper employs no presumption of conjugacy in the priors and
propose an independent prior distribution for each regression coefficient that is a
mixture of two univariate normal distribution, while GM prior distributions that
are natural conjugate or near natural conjugate and permits prior dependence
across coefficients. Second, (5) allows sign constraints for particular coefficients
by differing the truncated intervals (for example, one may set a; = 0 and b; = oo
for the positive ), but GM does not permit sign constraints. Third, if one
has priori belief that 8; € [a;,b;], where a; and b; have the same sign, then the
prior distributions used in this paper include the case that j-th predictor variable
is included in every possible model, whereas GM for technical reasons does not
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allow the case.

For choosing ¢;(> 1) and o; in (5), a useful guide is the following. The
density of TN{ajsﬁijj}(O,c]a]) is larger than that of T'Ny,, <B;<b; 10,0 ) iff
|B;| > 0(c;)o;, where 6(c;) = (2In(n;c;) 2/(c —1))1/2 and

i = ®(bj/(cj05)) — 2(a;/(cj05)
! (b /oj) — ®(aj/a;)

It may be also useful to note that n;c; is the ratio of the heights of TNy, <4, <4,3 (0, ¢5 a?)

and T'Nyg, <p,<p;1 (0, JJZ-) at 0, indicating the prior odds of excluding z; when §;

is very close to 0.
The third, and final, stage specifies beliefs about «;’s. This can be done via
a reasonable choice of the prior density for o = (a1, ..., a);

k
ple) = J] g7 (1— g,
=1
Therefore, the complete model structure of the hierarchy has the form.
7oy Y;
pY18) = []p/(1—p)",
i=1

k (271.0. ) 1/2 52
) p{‘_]

p(Ble) = ]

A4 [30s/0,) —0as/oy) T2
(2m cJQUJQ) /2. 5]2
" q)(bj/(cjo'g)) (I)(aj/(cjaj)) eXp{ 26‘3‘ 32} [I(aj = 1)I(aj S /Bj S bj)} s

ple) = (1 — gy)me),

u'}jw

where [(A) is an indicator function of the event A.

In many applications, it may be of interest to make inferences both about
the unit characteristics, the 3;’s, and the population characteristics, the «;’s. In
either case, straightforward probability manipulations involving Bayes’ theorem
provide the required joint posterior density of 5 and « from which one can make
the inference of interest: |

f(B,elY) =

(27ra )~/
CH 35 /ay) - 9a)e,

y exP {—ﬁ} [I(a; = 0)I(a; < Bj < bj)]
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N (2mco})~ 1/ exp {___ﬂj_Q} [I(e = 1)I(aj < B <b))]|,
®(bj/(cjo;)) — ®(aj/(cjo;)) 2cjo7
k n

x [1a7@—a)") [l —p)' ", (6)
L 1.

where C in the above equation is a generic proportionality constant.

Our main reason for embedding the ¢-link model (2) in the above hierar-
chical mixture model is to obtain the marginal posterior distribution h(a|Y)
f(Y]a)p(e), which contains the information relevant to variable selection. How-
ever, it is easily seen that the problem of analytically calculating the marginal
from (6) is a challenging one. Fortunately, recent developments of a MCMC
method, say the Gibbs sampler, provides a method that directly addresses sim-
ulation based calculation of the marginal posterior (cf. Gelfand and Dey 1994).

3. Data Augmentation and the Gibbs Sampler

3.1. Data Augmentation

To allow the possibility that the posterior simulation requires data aug-
mentation (cf. Albert and Chib 1993), we introduce a set of latent variables
{Z;, i=1,...,n}, where the Z; are independently distributed as a ¢ with loca-
tion parameter X|(, scale parameter 1, and degrees of freedom v, so that

Z; ~ t,(X!B,1) and V; =1(Z; >0), i=1,...,n, (7)

where I(A) is an indicator function of the event 4. The above specification in
fact defines the ¢, link model for P(Z; > 0) = T, (X/3). Let us introduce the
additional independent random variables A;, and write the distribution of Z; as
the following scale mixture of normal distribution:

Zilhi ~ N(X[B,27Y) and N ~ Gamma(v/2,2/v), i=1,...,n, (8

so that Z; ~ t,(X!3,1).
Under the hierarchical model, the above data augmentation scheme leads

to the joint posterior density of the unobservables 5, o, A = (A,...,\,;) and
Z =(Zy,...,2Zy), given the data Y = (V3,...,Y,) :

f(Byo, A\ Z]Y) =

(2maf) /2 AP
¢ H B(b,/05) — ®(a;jo;) L {“5072} [I(a; =0)I(a; < B; < by)]
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(27rc§aj2-)‘1/2 512 ‘ ‘
T B/ (e07) — B/ (o) {_2—032;3—} ey = 1)Iag < b < b}
k n
< a7 (1 =g [THI(Z: > 0)I(Y; = 1) + 1(Z; < 0)I(Y; = 0)}
j=1 i=1
X $(Zi XIB, AT ()N P e N2, (9)

where C here is a generic proportionality constant and d(v) = [D(v/2)(2/v)*/?]7,
¢(- ;a,b) is the N(a,b) pdf and ®(-) is cdf of the standard normal distribution.

3.2. The Gibbs Sampler

Note that the joint posterior distribution (9) is complicated in the sense that it
is difficult to normalize and directly sample from. But computation of respective
marginal posterior distributions of 8, Z;’s, A;’s and a;’s using the Gibbs sampling
algorithm requires only fully conditional distributions of them. The conditional
distributions of £;’s involved in the algorithm are simple.

Given By (£ # 7), Z; and );, define '

Wi:Zi—ZﬂgzL‘ig i=l,..‘.,n.‘ (10)
]

Then the conditional distribution of g; is the usual posterior density for the
regression parameter in the normal linear model

W; = Bjz;; +e;, where ¢; nd N (0, /\i_l), (11)

obtained from proper T'N,, Sﬁijj}(O, UJ‘?‘) and T'Nyq;<p.<p, (0, CJZO‘JQ-) priors of 3;

for a; = 0 and a; = 1, respectively.

For a; = 0, the corresponding full conditional posterior kernel is

exp {__Z?:l )\i(Wi —ﬂjxij)Q . ﬁ_

}I(aj < B < b))

2 2032
B2
oC exp {—(—ﬂj—%fj—)} I(a; < Bj < by), (12)
J

where . N
~J2- = (1/0']2 -+ Z)\ing)_l and ﬁj = ~]2~ ZAiWimij'
i=1 i=1
This gives full conditional posterior distribution of 3;,

ﬂ]IY, Z, A, aaﬁ(j) ~ TN{ajSﬂijj}(Bﬁ&]z)v if Qj = 0, 7=1,...,k, (13)
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where B(;y = (B -5 Bj—1,Bj+1,- -+ Be)-

Similarly, for a = 1, we have

Bj‘Yv Zy A a:IB(j) ~ TN{ajSﬁjgbj}(B;aé;z)a if Gy = Lj=1,...,k (14)

where " "
6;2 = (1/(c§<7]2-) + Z )\iw%j)_l and 5 = 6;2 > NiWizi;.
i=1 i=1
If the prior distribution for 8; is not truncated (i.e. a; = —o0, b; = 0o) then

conditional on Z, A, @, and By, B ~ N(B;,&;) for o = 0 and B; ~ N(f,55%)
foro; =1,7=1,...,k ‘
Full conditional distributions of Zi,...,Z, are independently distributed as

truncated normal distributions :

ZiY,B, Mo ~ TNigsey(XiB A7), if Yi=1, (15)
Z’LlYaﬁaAva ~ TN{ZzSO}(Xz,ﬂ,AZ_l)a it Y; =0,

where TNy 4y(X!8, ;") is the normal distribution N (X/8, A1) truncated to the
interval event A.

M, .., A\ are independent with
XilB, Z,a, Y ~ Gamma (V;—l, =" (Z12— X{,B)2> . (16)
Additional variables a1, ..., o are independently distributed as
oY, Z, B, A, a5y ~ Be <—Ji]———> , (17)
fi +d;
where a(;) = (@1, .., -1, ¥jt1,. .. , ), Be(y) denotes a Bernoulli distribution

with parameter v and

fi  _ exp{—p3/(2¢507) }q;
fi+di  exp{=B}/(2c303)}a; + njc;j exp{ =57 /(203)H1 — q;)’

where
i = D(bj/(cjo5)) — ®(aj/(cjos))
? ®(b;/0)) — ®(aj/aj)

g=1,...,k.

Remark 1. 0 < n; < 1 for ¢; > 1, where the equality holds for (a; =
—00,b; = ), (a; = —o0,b; = 0) and (a; = 0,b; = oo0). This is an effect of the
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truncated prior distribution in (5) that puts more possibility of j-th predictor
variable being included in the variable selection. This effect tends to be more
evident when a; and b; (a; < 0 < b;) take values near 0.

Remark 2. Form (8), it is easily seen that, as v — oo, P(\; = 1) = 1,i =
1,...,n, because, for v — oo, the limit of the moment generating function of
Gamma(v/2,2/v) is €'. Thus, by fixing all \;’s equal to 1, we can use the above
Gibbs sampler for the variable selection in the probit regression.

Remark 3. Since tg random variable is approximately .634 times a logistic
random variable, the above Gibbs sampler with v = 8 can be used for the variable
selection in the logistic regression (cf. Albert and Chib 1993).

3.3. Subset Selection Scheme

The hierarchical nature of the model gives relatively straightforward imple-
mentation of the Gibbs sampling scheme as practiced by Geman and Geman
(1984). A possible complication could be the simulation from truncated normal
distribution. This can be easily resolved by the algorithm of Devroye (1986).

The Gibbs sample of @ can be used to compute an empirical distribution
which converges to the actual marginal posterior h(a|Y) (cf. Casella and George
1992 and Tierney 1994). In particular, the empirical distribution of the o would
have following implications:

(i) The distribution corresponding to the most promising subsets of z1,..., 2k
“will appear with the highest frequency, because it is just those values which have
largest probability under A(a|Y).

(ii) The low-frequency or zero-frequency values of o may simply be ignored,
because these correspond to the least promising models.

(iii) Even when no high-frequency values of o appeared in the empirical distri-
bution, the marginal distribution of & may contain useful information for model
selection. The marginal distribution may clearly show us that some predictor
variables are inactive.

These imply that a simple tabulation of the high-frequency values of o can be
used to identify the corresponding subsets of predictors as potentially promising:

4. Numerical Examples

The objectives in these exampleé are to demonstrate a convenient method for
the formulation of priors, illustrate favorable performance of the procedure, and
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study the relation between prior and posterior distributions for the coeflicients
of some predictor variables.

This exarhple treats problems involving k=12 potential predictors with con-
strained coefficients. The predictors were obtained as independent standard nor-
mal variables, z1,...,212 YN (0,1), so that they were practically uncorrelated.
The dependent variables were generated according to a probit model and a logistic

model:

p; = PY;=1) ®(B1zi1 + frzi1 + Br2Tin2), (18)
exp{f1zi + P1wi1 + Brazio} (19)

1 +exp{Bfizi1 + Bozio + PraZira}

po= PYi=1) =

For the example, two cases of coefficient values and constraints are considered.

Case 1: B1 = —2, B2 = —2 and B2 = 0.1 with constraints £; <0, f2 <0 and
0.01 < f12 <0.5.

Case 2: Case 1: B; = 4, S = 4 and f12 = 0.1 with constraints 81 > 0, f2 >0
and 0.01 S ﬁlg S 0.5.

Thus 8 = (f1, $2,0,0,0,0,0,0,0,0,0, B12)'. We applied the suggested variable
selection method with the indifference priors for the second and third hierarchy
of the model suggested in Section 2. The indifference priors are constructed as
follows

Plaj=1)=¢qj=gq, fory=1,...,11,

gj=0,¢ci=c¢, forj=1,...,12.

We set g1o = 1 to reflect the constraint 0.01 < f12 < 0.5 in the prior for the
second and third hierarchy of the model. Different prior beliefs will, of course,
lead to other choices for g;, o; and c;. For instance, it is thought that a certain
predictor may not be enter the model at all, the corresponding ¢; and g; would
be smaller, while ¢; would be larger and their values may be set employing the
same kind of reasoning about marginal effects. We considered various choices
of the hyperparameters for the indifference priors. For each o, we considered
the low and high settings, o; = .3 and o; = .5. For each ¢; we considered the
low and high settings, ¢; = 4 and ¢; = 9. These choices provided substantial
separation between the two mixture components in (5) while still allowing for
plausible values of §; when a; = 1. As a base probability that each predictor is
included in the model, we took g;. = .2 except for g2 = 1. To study the relation
between the prior and posterior distribution of &, we also considered ¢; = .1 and
g; = .5 (setting q12 = 1). Thus we set up following twelve priors for the example.
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Table 1. Twelve Priors

pior 1 2 3 4 5 6 7 8 9 10 11 12

q 61 01 01 01 02 02 02 02 05 05 05 05
o 03 03 05 05 03 03 05 05 03 03 05 0.5
c 4 9 4 9 4 9 4 9 4 9 4 9

Using SAS/IML we generated two artificial data sets of each size 50 from the models
(19) and (20) with given values of 3;’s, and ran twelve parallel chains of the Gibbs
sampler for t1g0 link model and ¢ model (formulated by using each prior in Table 1),
respectively. The parallel chains were obtained by differing starting points overdispersed
to provide good coverage of the posterior. Twelve sets of starting points considered for
each model were combinations of following parameter values:

(1) By, 7 =1,...,12: mle of §;, mle + (s.d. of mle), mle — (s.d. of mle),

(it) (al,...,a12). ©,...,0,(0,1,0,1,...,0,1),(1,0,1,0,...,1,0),

a,..., 1)

(111) ()\1, - .,)\12): (1, vy 1) ‘

Here mle denotes the unconstrained maximum likelihood estimate of §; for the probit
model. We obtained 24 ((2 different values of (81, f2, £12)) x 12 (priors)) sets of the
twelve parallel chains from running the Gibbs sampler. By use of plots option of the
“CODA Output Analysis Menu” by Best et al. (1996), we got result of the diagnostic
checks (outlined in Cowles and Carlin, 1996) to each set of parallel chains. This gave a
clear indication that convergence was achieved within 1000 iterations for all the models.

Using the same artificial data set of size n=>50, a Gibbs sample of m=1000 obser-
vations from the Gibbs sequence was obtained from each Gibbs sampler. The sampling
scheme adopted here was to allow initial 1000 iterations for “burn-in” and then to pick
up every 10th observation until Gibbs sample of size m=1000 was collected. For each
Gibbs sampling, we used corresponding unconstrained mle for 50 a§-0) =1and )\(0) 1,
j=1,...,12, as starting values.

The variable selection results of the ¢ link model for each artificial data set (gen-
erated from (19) and (20) are noted in Table 2 and Table 3. They display respec-
tive three high-frequency probit and logistic models corresponding to the frequencies of
a = (o1,...,012)" that appeared for each prior. In each case of the priors, the true
model is included in the first three high-frequency values among 22 different frequency
values of «, suggesting reasonable robustness with respect to prior specifications. Aside
from the robustness, the tables note the following implications: (i) They show how the
suggested variable selection method successful in identifying several promising models
rather than the single best model. This feature is similar to the way in which stepwise
methods are used to narrow the scope of model selection. (ii) For every prior, the true
model is included in three most probable models selected. However, under the same
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hyperparameters given, algorithm for the probit model seemed to favor more saturated
models than that for the logistic model. This fact coincides with Remark 3. (iii) Al-
though all the frequencies of the 212 possible models are not presented in the tables, it is
seen that, for fixed ¢; and o5, g; get smaller, the Gibbs sampler tends to select smaller
model than larger g; does. On the other hand, for fixed o; and g¢;, high setting of ¢;
uniformly yields higher frequency for the true model than low setting of ¢; does.

5. Concluding Remarks

The present paper has developed and illustrated a Bayesian approach to narrow the
scope of possible models in the variable selection for a class of the binary response ¢
link regression models. Though the suggested approach would not directly lead to a
single best fitting model, it is demonstrated as a way to save the overwhelming job of
comparing all the 2% possible submodels for the ¢ link regression model having k predictor
variables. Thus, as an alternative to usual optimal subset selection procedure (involving
the overwhelming comparisons of all 2% possible subset models), a two-stage variable
selection procedure can be constructed: First, select m << 2* promising subset models
via the suggested approach. In the second stage, choose a best fitting model by means of
usual variable selection criteria such as AIC, BIC, the deviance criterion (Collett 1991)
and the marginal likelihood by Chip (1995). For the full Bayesian two-stage procedure,
we may adopt the marginal likelihood criterion in the second stage.



Table 2. High Frequency Probit Models (Approximation by #1090 Link Model)
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Probit Model

Case 1

Case 2

prior 1

prior 2

prior 3

prior 4

prior 5

prior 6

prior 7

prior 8

prior 9

prior 10

prior 11

prior 12

Selected variables’
Z1T2%12
T1T12
1208712
T1T2212
Z1X2X3T12
T1T2X11T12
T1T2T12
T1x12
T1X2T8%12
T1Z2T12
T1T2XT8T12
T1T2T5T12
T1T2X12
T1T2X8T12
T1T2X10T12
T1Xx2T12
T1T228T12
T1T2T4T12
T1T2L12
T1T2X8T12
L1X2Tox12
T1T2712
T1T2X8T12
T1T25T12
T1T2%12
T1T2X8T12
T1Z2X5T12
T1Z2T12
T1T2L8T12
T1Z2T5T12
T1x2T12
T1X2L8T12
T1T2T5L12
T1T2T12
T1T2X8T12
T1L2T4XL8T12

prop. (%)

58.2
6.8
5.3
71.0
10.0
2.4
61.9
5.3
5.0
75.5
8.3
2.0
33.4
8.3
4.0
54.9
11.0
3.8
38.6
7.4
4.0
54.2
13.1
4.1
6.3
2.5
1.6
6.3
5.4
3.4
4.0
3.1
2.6
7.5
7.3
5.8

Selected variables
T1T2T12
T1Z12
T1X2X4T12
T1T2212
T1T2T8T12
T1x2T6T12
T1T2T12
T1T12
L1X2X4L12
T1T2%12
T1T12
T1T2T4L12
T1T2212
T1X2T5T12
T1X228T12
T1T2T12
T1T2T8T12
T1T2X5T12
T1T2T12
T1T2X4T12
T1T2T8T12
T1T2T12
X1X2T6T12
T1X228T12
T1T2X12
T1T2T4%12
T1X228T12
T1X2X12
T1T2T8712
T1Z2T4%12
T1T2T12
T1X2T4T12
T1T2L5T12
T1T2Xx12
T1Z2T5T8T12
T1T2T4L6L3T12

prop. (%)
54.4
118
4.6
71.8
6.1
45
50.5
14.4
5.8
56.7
22.3
2.3
30.9
5.9
5.5
42.5
9.5
5.3
33.4
7.7
5.6
54.6
8.6
4.3
4.3
3.0
2.1
8.6
5.3
45
35
3.1
2.8
6.8
5.6
5.2
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Table 3. High Frequency Logistic Models (Approximation by tg Link Model)

Logistic Model

Case 1

Case 2

prior 1

prior 2

prior 3

prior 4

prior 5

prior 6

prior 7

prior 8

prior 9

prior 10

prior 11

prior 12

Selected variables
T1T2T12
T1T12

Z1
122712
Tili2

T12
T1T2T12
T12

Z1T12
ZT1Z2T12
T1T12

T12
T1TX2ZX12
T1r12
T1T3%12
T1T2T12
T1T12
T1T3T12
T1T2T12
T1T12

12
T1T2T12
T12

r1T12
12712
T1T2T5T12
T1T2T3T12
T1T2T12
T1T2X3T12
T1X2T4T12
T1T2T12
T1T2X3T12
T1T2T4T12
Z1T2X12
T1Z12
T1T2X4T12

prop. (%)
34.0
24.6
3.9
59.9
17.4
3.6
34.9
24.2
9.0
56.0
23.2
3.9
175
16.7
5.0
34.3
23.7

© 5.0

229
16.2
5.8
33.3
20.6
13.3
3.8
2.3
2.2
12,5
4.7
4.3
3.8
2.5
2.0
14.8
7.8
4.3

Selected variables
T1T2%12
T1%12
T1T2X6T12
T1T2T12
T1L2X11X12
L1X2X5%12
T1T2T12
T1Z12
T1T2X5T12
T1T2T12
T1T2T5T12
T1T2T4T12
T1T2T12
T1T2T5T12
T1X2T4T12
T1T2T12
T1T2X5T12
T1T2X4T12
T1T2T12
Z1T2T6T12
Z1T2T5T12
r1Ta2k3
T1T2T5T12
T1T2T6eT12
T1T2%12
T1T2Z5L12
Z1T2T10T12
T1T2T12
T1T2T11T12
T1T2T5T12
T1T2T12
1T2X8T12
T122T5%12
T1T2%12
T1T2T5T12
T1X2L6T12

prop. (%)
54.8
9.0
4.5
74.6
3.2
3.1
62.2
7.2
4.2
79.3
3.6
3.2
37.3
13.1
4.4
47.9
13.1
4.4
35.1
6.9
6.3
52.1
8.9
7.8
3.4
2.6
1.8
10.6
5.2
4.6
3.6
2.8
2.5
12.0
6.3
6.2
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