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Intrinsic Priors for Testing Two Normal
Means with the Default Bayes Factors

Jongsig Bae ! Hyunsoo Kim ? and Seong W. Kim ?
g

ABSTRACT

In Bayesian model selection or testing problems of different dimensions,
the conventional Bayes factors with improper noninformative priors are not
well defined. The intrinsic Bayes factor and the fractional Bayes factor are
used to overcome such problems by using a data-splitting idea and fraction,
respectively. This article addresses a Bayesian testing for the comparison of
two normal means with unknown variance. We derive proper intrinsic pri-
ors, whose Bayes factors are asymptotically equivalent to the corresponding
fractional Bayes factors. We demonstrate our results with two examples.

Keywords: Default Bayes factor; Intrinsic Bayes factor; Fractional Bayes factor;
Intrinsic prior; Noninformative prior.

1. INTRODUCTION

Bayesian model selection and testing problems have establlshed progresswe
development of default Bayes factors that can be used i in the lack of subjective
prior information. Two very general such default Bayes factors are the fractional
Bayes factor (FBF) of O’Hagan (1995) and the intrinsic Bayes factors (IBF) of
Berger and Pericchi (1996). These methodologies have been applied in a wide
\}ariety of settings, and have undergone progressive study in situations involving
testing of nested hypotheses or models.

Bayes factors under proper priors or informative priors have been successful
in testing or model selection problems. However, limited information often re-
quire the use of noninformative priors such as Jeffreys’s priors (Jeﬂreys 1961)
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and reference priors (Berger and Bernado, 1992). In this article, we use the ref-
erence prior to test the equality of two independent normal means with unknown
variance and we compare the numerical results of the arithmetic IBF and the
FBF.

Suppose that the data x has a parametric distribution with density f(x[&;),
where &;, 1 = 1,2, is a vector of unknown parameters which belongs to the the
parameter space Z;, ¢ = 1,2, respectively. Let ¥ (£;), 4 = 1,2, be the improper
prior density. The Bayes factor BY of a model M; to a model M, is

m(x) _ Jz, 1l (€2)d6s
m{(x) [z, F(x|&)m (&1)dE’
N

where mi¥(x) and ml’(x) are the marginal densities under M; and M, respec-
tively. Since both 7V (£1) and 7' (&;) are improper, they are defined only up to
arbitrary constants, say c¢; and cp respectively. Thus, BY is defined only up to
(e2/c1), which is also arbitrary. So, the resulting Bayes factor is not well defined.
This issue has been initially addressed by several authors including Geisser and
Eddy (1979), Spiegelhalter and Smith (1982), and San Martini and Spezzaferri
(1984).

The IBF criterion is based on a data-splitting method, which removes the
arbitrariness of improper priors. There have been several articles written which
use the IBF. Varshavsky (1996) made use of the IBF for a stationary autoregres-
sive process. Lingham and Sivaganesan (1997) performed a test for the shape

BN = (1.1)

parameter of the power law process. Kim (2000) analyzed comparisons of two
exponential means. Kim and Ibrahim (2000) derived an explicit form of the IBF
for generalized linear models.

The difficulty of an IBF approach is due to its considerable computational ex-
pense; for large sample sizes it is fairly time-consuming. Another useful criterion
is the FBF which is based on a similar intuition to that of the IBF. It is computed
by exponentiating the likelihood to a power §, where 0 < § < 1. It is well defined
as in the IBF method. Moreover, it does not require a heavy computation. The
FBF version is thus much more computationally effective. So, in this paper, we
concentrate on the FBF method with a specific choice of a fraction 6. We refer
the reader to Kass and Raftery (1995) for further discussions about Bayes factors.

This paper is organized as follows. In Section 2, we review the two default
Bayes factors. In Section 3, we consider the testing problem for comparing the
two normal means with unknown variance. In particular, the study of intrinsic
priors is restricted to the FBF and we derive proper intrinsic priors, whose Bayes
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factors are asymptotically equivalent to the corresponding FBFs. A real dataset
and a simulated dataset are analyzed in Section 4. A brief conclusion is given in
Section 5. ‘

2. PRELIMINARIES

We have known that the Bayes factor B3] in (1.1) involves arbitrary constants.
The methods for removing this arbitrariness are to use a subset of data, a training
sample, and a portion of the likelihood, a fraction 5. ‘

First, we discuss the method for removing this arbitrariness by a training
sample. Let x(/) be a training sample and let x(—!) be the remainder of the
data. First, compute the posterior 7}¥ (£]x (1)), then compute the Bayes factors
with the x(—{) as data, using 7 (£|x({)) as the prior. Consequently, the Bayes‘
factor of model M, to model M is given as follows : ‘

By (1) = B3} - Biy(x(1)), (2.1)

where B (x(1)) = m{’ (x(1))/mL’ (x(1)) is the Bayes factor for the training sample.

In practice, x(I) is chosen to be minimal in the sense that the marginal

N
my

that in (2.1), Bo1(l) does not depend on arbitrary constants, and thus is well
defined. Furthermore, the Bayes factor defined by (2.1), depends on the choice
of the minimal training sample. To avoid this dependence, Berger and Pericchi
(1996) suggested to take the average of Ba;(l) over all x(I). .

(x(1)) is finite for ¢ = 1,2, and no subset of x(l) gives finite marginals. Note

Definition 3.1 The arithmetic intrinsic (AI) Bayes factor of My to M is
given by

Bl == 2321 = BY - CFA;,, (2.2)

where L is the number of all possible minimal training samples, and the correction
factor is given by

l 1

Second, we introduce the method for removing the arbitrariness in (1.1) by
a portion of the likelihood with the fraction §. O’Hagan (1995) proposed the
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fractional Bayes factor (FBF) as a default Bayes factor. The FBF of model Ms
to model M; is

Bjy = B} - CFRn(0), (2.4)
where the correction factor is defined by

e, Ly (&)1 7 (&) ey
R = )P o (e

Here, L;(;) is the likelihood function under model M;, i = 1,2 and §, known as
a fraction of the likelihood function, is a number between 0 and 1. A commonly
suggested choice is § = m/n, where m is the size of the minimal training sample
proposed by Berger and Pericchi (1996) and n is the size of the whole sample. We
will use this choice in our problems. However, the choice of 6 may vary to specify
for obtaining a stable Bayes factor. See O’Hagan (1995), Berger and Pericchi
(1998), and among others.

It is of considerable interest to see the asymptotic behavior of default Bayes
factors to real Bayes factors which can be computed with prior distributions,
often called intrinsic priors. This can detect systematic biases of default Bayes
factors towards one of the hypotheses. Further, intrinsic priors can be directly
used to compute Bayes factors especially for small sample sizes. This issue was
established by Berger and Pericchi (1996), and several intrinsic priors were derived
in various settings. See Dmochowski (1996), Lingham and Sivaganesan (1997),
Berger and Mortera (1999), and Kim (2000) for related work.

Under the regularity conditions in Berger and Pericchi (1996), a set of intrinsic
priors denoted by (nf, ) is a solution of the following system of equations:

m

(@) (&) _ .

¥ (2 (E))nd (&) Bl (2.5)
w5 (&) 7] (¢1(£2)) = Bi(&) |
(&)l ($1(&2)) e

where for i # j,
N M ~
¢z(§y) = nlgglo E'gjj (&;) under M;.

Here, &; is the MLE under M;, and for i = 1,2,

B} (&) = Jim CF under M;,
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with CF being CF A5 or CFRy5(9).

Remark 1 The noninformative priors 7 (£;) and 7Y (&) are called startiﬁg
priors. We note that solutions are not necessarily unique nor proper. It is of
interest to find proper intrinsic priors for given starting priors. Once we derive
proper intrinsic priors, the fractional Bayes factor B can be replaced by the
ordinary Bayes factors B4, computed with intrinsic priors at least asymptotically.

For the nested model comparison, i.e. when =; C Ey, from (2.5) the intrinsic
prior m4(£;) can be derived as

w5 (€2) = m3 (&) (¢1(€2)) B3 (&) /md (¢1(&2)).

Obviously 71(¢5) depends on the choice of 7{(£;). So there could be a class
of intrinsic priors. Kim (2000) found a class of intrinsic priors for testing two
exponential means. Furthermore, it is of interest to see whether £(&;) is proper,
since one cannot guarantee the propriety of 7r£ (152). Thus, it is different from
Theorem 1 of Berger and Pericchi (1996).

3. TESTING NORMAL MEANS

For the general location-scale model, closed expressions for the default Bayes
factors are not typically obtainable. We thus consider only the normal model,
where closed expressions can be found and allow an interesting comparison of the
two default Bayes factors.

Suppose that we have independent observations z;; ~ N(p;,6), i =1,2; j =
1,2...,n; with unknown variance §. We use the following notation throughout
this paper. Let ©; = {(u,0)| —o0 < pt < 00,0 < 8§ < 0o} and Oy = {(u1, p2,0)| —
00 < 1, e < 00,0 <6< OO} Let N = ny + no, and let X; = 2?1:1 :vm/nz and
s? = > (w5 — %;)%,i = 1,2. Assume that n;/N — a as N — oo. Consider
the following models,

My : p1 = po, and Ma @ p1 # po.
Let p denote the common value of u; under M;. We start with reference prior
for each model, i.e., 7 (1, 8) = 1/8 and 7l (uy, po,0) = 1/6, respectively. The
Bayes factor for the full sample is

BN =ﬁ(n1n2)—1/2 D(N/2—1) {s? + 8% + nyny(%; —%y)2/N}N-1)/2
2 N T(N-1)/2) {7 + 2} Vo1 \

. (3.1)
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The minimal training samples are size of 3 (see Remark 2), i.e. x1(I) = (z1;, Z25,, T2j,)
and x2(1) = (14;, Z1i,, T2;). Then the marginals for x;(I) and x2(l) are

V3

mY (x1(1)) = 7{(9611 — 795,)% + (325, — T255)° + (T2j, — 2:)°} 71,

my (x1(1)) = |72, — T2j,| ",

and
V3 , _
m{ (x2(1)) = —7;{(%'1 — T13,)% + (T1i, — T25)” + (325 — 714,)°}
my (x2(1)) = |z1i;, — T1ip| 7

Thus, the Al Bayes factor is
B3\l = B} - CF Au, (3.2)

where the correction factor is given by

1 L2
CFA;; = ZBlz x1 + e ZB{%(XQ(I)) ]
L2 =1

with BfY(x;(l)) being the Bayes factor for the training sample x;(), and L; being
the number of all possible minimal training samples x;(l) for ¢z = 1, 2.

Remark 2 Note that if we take one observation from each population, the
marginal density for M; is finite. However, for such a training sample, the
marginal density for M is not finite. So, we need one more observation. Now,
let x1(1) = (21,25, %25,) and x2(l) = (14, 214y, 22;) be training sample for
it € {1,---,n1} and 4,5 € {1,---,n2}, K = 1,2. Since the marginals for train-
ing samples x;(I) and x2(l) are finite and no subset gives finite marginal, the size .
of the minimal training sample is 3.

Meanwhile, the fractional Bayes factor BS; of My to M; is
Bj; = By} - CFRy,(9), (3.3)

where BJ] is in (3.1) and the correction factor at § = 3/N is

3) _ 1 (nl n2>1/2 {(S% +S%)/N—n1n2(>_cl +)_(2)2/N2}_1.

CFR —
" <N NN {(s7+s3)/N}-172

We need to compute Bj(u1, p2,8) to drive intrinsic priors.
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Proposition 3.1 The quantity Bj(u1, 2, 6) is

] Vab - |
BZ(/J'lnu'Z,e) = T{0+ab(#1 _/-1'2)2} 191/27 (34)
where b =1 —a.
Proof.The result immediately follows from the strong law of large numbers.

O
After taking the limit, the set of intrinsic priors is

{ T (/1'30) :g(/"'ae)a (/1'76) € 01,

I

1

. . (3.5)
o (11, po, 0) = glaps + bue, 8) - B3 (u1, p42,0), (p1,p2,0) € O,

T
where B3 is given by (3.4) and g(p, 6) is any proper density for (u,6) € ©;.

Theorem 3.1 The intrinsic prior 74 in (3.5) is proper.
Proof. Let s = apy + bug, t = p1 — 2. Then

Vab -
///@ 5 (p1, 2, 0)dpadpn b // o T(9+ab(u1—#2)2) Lgl/2
2 2 .

g(apy + buz, 0)du1dpado

-y / / Vb o 1 ab®) 16V 20(s. ) dtdsds
O3

™

=// (s, 0)dsd6

.}

Corollay 3.1 When g(u,0) is given by g(i,8) = g1(p]6)g2(8) with pl6 ~
N(0,76) and 6 ~ Inverse Gamma(/\, n), the set of intrinsic priors is ‘

S

I _ ~1/2 e
1(p,0) = (2n70) exp{ } 9A+1 exp{— }, under O, (3.6)
3 (p1, 2, 0) = glap + buz,ﬂ) Bz (#17N2a9), under ©2. |

where

api + bug)® n

"
26 3 Toyet PTG

olaps + buz, ) = (2m7) ™7 exp( -

Remark 3 The joint prior 7{(u,6) in (3.5) is from a conjugate family for
the distribution of (x1,x2), where x1 = (211,...,%1n,) and X2 = (Z21, ..., Z2ny)-
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This prior is commonly used for which the data follow the normal distributions
(cf. Berger (1980)).

Remark 4 We were not able to derive intrinsic priors for the IBF case, since
the closed form of Bj is unobtainable. As O’Hagan (1995) suggested, there are
two more different choices of 6. However, for those choices, it is impossible to
derive intrinsic priors in this setting. If we restrict the parameter space, it could
be possible to compute the Bayes factor by the intrinsic limiting procedure of
Moreno et al. (1998).

4. NUMERICAL RESULTS

Example 1: The following data are given by Rohatgi (1976). During World
War II bacterial polysaccharides were investigated as blood plasma extenders.
Sixteen samples of hydrolixed polusaccharides supplied by various manufacturers
in order to assess two chemical methods for determining the average molecular
weight yielded the following results (data unit is 1000):

MethodA 62.7 29.1 44.4 478 36.3 40.0 43.4 35.8
33.9 442 343 31.3 384 471 421 422
MethodB 56.4 275 422 46.8 33.3 37.1 37.3 36.2
35.2 38.0 322 273 36.1 431 384 39.9

Let p1 and po denote the mean molecular weights for Method A and Method
B respectively. Suppose that we want to test My : u1 = po versus My : pug # uo.
Here (n1,n2, fl1, fi2) = (16,16,40.813, 37.938), where /i; is the MLE of u; for i =
1,2. We computed the fractional Bayes factor and the Bayes factors using the set
of intrinsic priors given by (3.6) with five choices of 7 and three choices of (), 7),
respectively. They are 7 = 1, 10, 50, 100, 500 and (0.01, 0.01), (0.1, 0.1), and (1.0,
1.0). The computation requires a two-dimensional numerical integration. This
can be done by the IMSL routines linked to Fortran 77. The numerical values
are reported in Table 1. The Bayes factors with intrinsic priors are nearly free of
hyperparameters (A,7) but they get close to Bfl as 7 increases. We notice that
starting priors for both M; and M, do not depend on location parameters. Thus,
as 7 increases, the effect of the conditional prior 4|@ in Corollary 3.1 decreases.
Since the Bayes factors are less than 1, one may conclude that the difference
between the two chemical methods is fairly small. Furthermore, there is not
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much difference between each value of (A, 7). Therefore, the Bayes factors using
intrinsic priors are quite robust in terms of the hyperparameters 7 > 10 and

(A,m).

Table 1: Bayes factors for testing M : p1 = po versus My : pg 7# o

(\n)
(A1, fi2) BAl  BE 7 (0.01,0.01) (0.1,0.1) (1.0,1.0)
1 0.186 0.186 0.190
10 0.231 0.231 0.238
(40.81,37.94) 0.361 0.253 50 0.239 0.240 0.247
100 0.240 0.241 0.249
500  0.241 0.242 0.250

Example 2: We performed a simulation study for testing M; versus M.
We examined the cases when puy = po = 0 for some choices of n; and ng. We
computed the average of the relative differences between the FBF and the Bayes
factors with intrinsic priors for choices of (A,7) and 7 given by (3.6). We used
200 replication to see the stability of numerical values. We also computed the
standard deviations of relative differences based on 200 replication. The numeri-
cal values are reported in Table 2 and Table 3. The relative differences are quite
small for each simulated dataset. Especially, as the sample size increases, the
relative difference decreases. This is what we would expéct from the theoretical
results. We also note that the values are quite stable.

Table 2: Default Bayes factors and MLE’s (Numerical values are averaged
over 200 replication.)

(n1,ma) (f1, fi2) Bl B

(5,5)  (1.024,1.011) 0.721 0.629
(10,10)  (0.999,0.971) 0.611 0.459
(20,10) (0.979,1.010) 0.585 0.342
(20,20) (1.019,0.980) 0.488 0.386
(30,30) (1.017,0.976) 0.320. 0.249
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Table 3: Relative difference |Bf; — Bf}|/ B4} for estimating the fractional
Bayes factor. The relative difference (R.D.) is averaged over 200 replication.
‘The numbers in parentheses are the standard deviations of the relative

differences, based on 200 replication

(nl,n2)

(Am)

(.01,.01)

(1,.1)

(1.0, 1.0)

T

R.D(STE)

R.D(STE)

R.D(STE)

(5,5)
(10,10)
(20, 10)
(20, 20)
(30, 30)

1

0.153(0.067)
0.081(0.029)
0.054(0.018)
0.042(0.014)
0.028(0.009)

0.154(0.065)
0.081(0.028)
0.054(0.018)
0.042(0.014)
0.028(0.009)

0.177(0.070)
0.087(0.030)
0.057(0.019)
0.045(0.015)
0.030(0.008)

10

(
0.155(0.073)
0.081(0.030)
0.054(0.018)
0.042(0.015)
0.028(0.009)

0.154(0.067)
0.081(0.029)
0.054(0.018)
0.042(0.015)
0.028(0.009)

(
0.175(0.069)
0.086(0.030)
0.057(0.019)
0.044(0.015)
0.030(0.008)

50

0.156(0.074)
0.081(0.030)
0.054(0.018)
0.042(0.015)

0.028(0.009)

0.154(0.068)
0.081(0.029)
0.054(0.018)
0.042(0.015)
0.028(0.009)

(
0.174(0.069)
0.086(0.030)
0.057(0.019)
0.044(0.015)
0.030(0.008

100

(
0.156(0.074)
0.081(0.030)

0.054(0.018)
0.042(0.015)

0.028(0.009

0.154(0.068)
0.081(0.029
0.054(0.018
0.042(0.015
0.028(0.009

0.174(0.069
0.086(0.030
0.057(0.019
0.044(0.015

500

(

(

(0.009)
0.156(0.074)
0.081(0.030)
0.054(0.018)
0.042(0.015)
0.028(0.009)

0.018(0.054

0.042(0.015

)
)
)
)
0.154(0.068)
)
)
)
0.028(0.009)

(
(
(

(
0.081(0.029
(

(

(

0.174(0.069
0.086(0.030
0.057(0.019
0.044(0.015

(0.008)
(0.069)
(0.030)
(0.019)
(0.015)
0.030(0.008)
(0.069)
(0.030)
(0.019)
(0.015)
0.030(0.008)

IBFs are the most difficult default Bayes factors to compute because the
number of training samples might be enormous with large sample sizes. But

5. CONCLUSION
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FBF's are easier to compute than IBFs. The weakness of the FBF was typically
inadequate for very small sample sizes. So, the FBF approach requires a large
region and the range of applicability of the FBF is more limited than the IBF.
However, the FBF methodology provides fully authentic Bayes factor in the sense
of dealing only with default standard noninformative priors. It is well defined and
seems to be reasonably close to actual Bayes factors. The computational results
show that the FBFs appear to correspond to ordinary Bayes factors using intrinsic
priors, at least asymptotically.
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