THE CONVERGENCE THEOREMS FOR THE McSHANE-STIELTJES INTEGRAL

JU HAN YOON AND BYUNG MOO KIM

ABSTRACT. In this paper, we define the uniformly sequence for the vector valued McSane-Stieltjes integrable functions and prove the dominated convergence theorem for the McShane-Stieltjes integrable functions.

1. Introduction and Preliminaries

It is well known that the Riemann-Stieltjes integral is not adequate for advanced mathematics, since there are many functions that are not Riemann-Stieltjes integrable, and since the integral does not possess sufficiently strong convergence theorems. In the late 1960’s, McShane [8] proved that the Lebesgue integral is indeed equivalent to a modified version of the Henstock integral (cf. Henstock [5]). Yoon, Eun and Lee [9] defined the McShane-Stieltjes integral for real-valued function which is the generalization of the McShane integral and investigated some properties of this integral. Gordon [3] generalized the definition of the McShane integral for real-valued functions to functions taking values in Banach spaces and investigated some of its properties. Many authors have studied McShane integral (cf. [3], [4]).

In this paper, we define the uniformly sequence for the Banach-valued McShane-Stieltjes integrable functions and prove the dominated convergence theorem for the McShane-Stieltjes integrable functions. Throughout this paper, X is a Banach space and we always assume that α is an increasing function on $[a, b]$ unless otherwise stated. We begin with some definitions.

Definition 1.1. Let $\delta(\cdot)$ be a positive function defined on the interval $[a, b]$. A free tagged interval $(x, [c, d])$ consists of an interval $[c, d] \subseteq [a, b]$ and a point $x \in [a, b]$.

Received by the editors October 17, 2000.
2000 Mathematics Subject Classification. Primary 28B05.
Key words and phrases. McShane-Stieltjes integrable.

The free tagged interval \((x, [c, d])\) is subordinate to \(\delta\) if
\[
[c, d] \subseteq (x - \delta(x), x + \delta(x)).
\]

The letter \(\mathcal{P}\) will be used to denote finite collections of non-overlapping free tagged intervals. Let \(\mathcal{P} = \{(x_i, [c_i, d_i]) : 1 \leq i \leq n\}\) be such a collection in \([a, b]\). We adopt the following terminology:

1. The points \(\{x_i : 1 \leq i \leq n\}\) are the tags of \(\mathcal{P}\) and the intervals \(\{[c_i, d_i] : 1 \leq i \leq n\}\) are the intervals of \(\mathcal{P}\).
2. If \((x_i, [c_i, d_i])\) is subordinate to \(\delta\) for each \(i\), then \(\mathcal{P}\) is subordinate to \(\delta\).
3. If \(\mathcal{P}\) is subordinate to \(\delta\) and \([a, b] = \bigcup_{i=1}^{n}[c_i, d_i]\), then \(\mathcal{P}\) is a free tagged partition of \([a, b]\) that is subordinate to \(\delta\).

Let \(\mathcal{P} = \{(x_i, [c_i, d_i]) : 1 \leq i \leq n\}\) be a finite collection of non-overlapping free tagged intervals in \([a, b]\), let \(f : [a, b] \to \mathbb{R}\), and let \(\alpha\) be an increasing function on \([a, b]\). We will use the following notations:
\[
f(\mathcal{P}) = \sum_{i=1}^{n} f(x_i)(d_i - c_i)
\]
and
\[
f^\alpha(\mathcal{P}) = \sum_{i=1}^{n} f(x_i)(\alpha(d_i) - \alpha(c_i)).
\]

Definition 1.2. The function \(f : [a, b] \to X\) is the McShane integrable on \([a, b]\) if there exists a vector \(z\) in \(X\) with the following property:

For each \(\varepsilon > 0\) there exists a positive function \(\delta\) on \([a, b]\) such that
\[
\|f(\mathcal{P}) - z\| < \varepsilon
\]
whenever \(\mathcal{P}\) is subordinate to \(\delta\) on \([a, b]\).

The function \(f\) is McShane integrable on a measurable set \(E \subseteq [a, b]\) if the function \(f\chi_E\) is McShane integrable on \([a, b]\).

Definition 1.3. The function \(f : [a, b] \to X\) is the McShane-Stieltjes integral function with respect to \(\alpha\) if for each \(\varepsilon > 0\) there exists a positive function \(\delta\) on \([a, b]\) such that
\[
|f^\alpha(\mathcal{P}) - z| < \varepsilon
\]
enever \(\mathcal{P} = \{(t_i, [a_i, b_i]) : 1 \leq i \leq n\}\) is a McShane partition of \([a, b]\) that is subordinate to \(\delta\). In this case, we write \(z = \int_{a}^{b} f d\alpha\).

A function \(f : [a, b] \to X\) is McShane-Stieltjes integrable with respect to \(\alpha\) on a measurable set \(E \subseteq [a, b]\) if \(f\chi_E\) is McShane-Stieltjes integrable with respect to \(\alpha\) on \([a, b]\).
2. The Convergence Theorems for the McShane-Stieltjes Integral

We now mention Henstock's Lemma for real-valued McShane integrable functions. For the proof, see Gordon [4].

Lemma 2.1 (Saks-Henstock Lemma). Let $f : [a, b] \to \mathbb{R}$ be McShane integrable on $[a, b]$. Let $F(x) = \int_a^x f$ for each $x \in [a, b]$, and let $\varepsilon > 0$. Suppose that δ is a positive function on $[a, b]$ such that $|f(\mathcal{P}) - F(\mathcal{P})| < \varepsilon$ whenever \mathcal{P} is a free tagged partition of $[a, b]$ that is subordinate to δ. If $\mathcal{P}_0 = \{(x_i, [c_i, d_i]) : 1 \leq i \leq n\}$ is subordinate to δ, then

$$\sum_{i=1}^{n} \left| f(x_i)(d_i - c_i) - (F(d_i) - F(c_i)) \right| \leq 2\varepsilon.$$

We state a weak version of Saks-Henstock Lemma which holds for the real-valued McShane-Stieltjes integrable functions, whose proof is identical to the real-valued McShane-integrable function case (See [4, Theorem 3.7]).

Lemma 2.2 (Weak Saks-Henstock Lemma). Let $f : [a, b] \to \mathbb{R}$ be McShane-Stieltjes integrable on $[a, b]$ with respect to α. Let $F^\alpha(x) = \int_a^x f \, d\alpha$ for each $x \in [a, b]$, and let $\varepsilon > 0$. Suppose that f is a positive function on $[a, b]$ such that $|f^\alpha(\mathcal{P}) - F^\alpha(\mathcal{P})| < \varepsilon$ whenever \mathcal{P} is a free tagged partition of $[a, b]$ that is subordinate to δ.

If $\mathcal{P}_0 = \{(x_i, [c_i, d_i]) : 1 \leq i \leq n\}$ is any collection of non-overlapping free tagged intervals that is subordinate to δ, then

$$\sum_{i=1}^{n} \left| f(x_i)(\alpha(d_i) - \alpha(c_i)) - (F^\alpha(b) - F^\alpha(a)) \right| \leq 2\varepsilon.$$

We define the uniform McShane-Stieltjes integrability for a sequence of McShane-Stieltjes integrable functions.

Definition 2.3. Let α be an increasing function on $[a, b]$ and let $\{f_n\}$ be a sequence of vector-valued McShane-Stieltjes integrable functions on $[a, b]$ with respect to α. The sequence $\{f_n\}$ is uniformly McShane-Stieltjes integrable functions on $[a, b]$ with respect to α if for each $\varepsilon > 0$, there exists a positive function δ defined on $[a, b]$ such that $\|f_n^\alpha(\mathcal{P}) - \int_a^b f_n d\alpha\| < \varepsilon$ for all n whenever \mathcal{P} is a free tagged partition of $[a, b]$ that is subordinate to δ.

Theorem 2.4. Let $\{f_n\}$ be a sequence of vector-valued McShane-Stieltjes integrable functions defined on $[a, b]$ and suppose that $\{f_n\}$ converges pointwise to f on $[a, b]$.
If \(\{f_n\} \) is uniformly McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha\), then \(f\) is McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha\) and

\[
\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha.
\]

Proof. Let \(\alpha\) be an increasing function on \([a, b]\). Since \(\{f_n\}\) is uniformly McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha\), there exists a free tagged partition \(\mathcal{P}_0\) of \([a, b]\) such that \(|f_n^\alpha(\mathcal{P}_0) - f_m^\alpha(\mathcal{P}_0)| < \varepsilon\) for all \(n\). Since \(\{f_n\}\) converges pointwise to \(f\) on \([a, b]\), for a free tagged partition \(\mathcal{P}_0 = \{(x_i, (c_i, d_i)) : i = 1, \ldots, k\}

\[
\|f_n^\alpha(\mathcal{P}_0) - f_m^\alpha(\mathcal{P}_0)\| = \left\| \sum_{i=1}^k f_n(x_i)(\alpha(d_i) - \alpha(c_i)) - \sum_{i=1}^k f_m(x_i)(\alpha(d_i) - \alpha(c_i)) \right\|
\]

\[
\leq \sum_{i=1}^k \left\| f_n(x_i) - f_m(x_i) \right\| (\alpha(b) - \alpha(a))
\]

\[
= (\alpha(b) - \alpha(a)) \sum_{i=1}^k \left\| f_n(x_i) - f_m(x_i) \right\|.
\]

For each \(x_i\), there exists a positive integer \(K_i(x_i)\) such that

\[
\|f_n^\alpha(x_i) - f_m^\alpha(x_i)\| \leq \frac{\varepsilon}{k} \quad \text{for all } n, m \geq K_i.
\]

Set \(N = \max\{K_i : 1 \leq i \leq k\}\). Then

\[
\|f_n^\alpha(\mathcal{P}_0) - f_m^\alpha(\mathcal{P}_0)\| < \varepsilon \quad \text{for all } n, m \geq N.
\]

There exists a positive integer \(N\) such that \(\|f_n^\alpha(\mathcal{P}_0) - f_m^\alpha(\mathcal{P}_0)\| < \varepsilon\) for all \(m, n \geq N\). Then

\[
\left\| \int_a^b f_n d\alpha - \int_a^b f_m d\alpha \right\|
\]

\[
= \left\| \int_a^b f_n d\alpha - f_n^\alpha(\mathcal{P}_0) \right\| + \left\| f_n^\alpha(\mathcal{P}_0) - f_m^\alpha(\mathcal{P}_0) \right\| + \left\| f_m^\alpha(\mathcal{P}_0) - \int_a^b f_m d\alpha \right\|
\]

\[
< 3\varepsilon
\]

for all \(m, n \geq N\). It follows that \(\{\int_a^b f_n d\alpha\}\) is a Cauchy sequence in Banach space \(X\).

Let \(L = \lim_{n \to \infty} \int_a^b f d\alpha\). We need to show that \(\int_a^b f d\alpha = L\). Hence, it is sufficient to show that \(\int_a^b f d\alpha = L\). Let \(\varepsilon > 0\). By hypothesis, there exists a positive function \(\delta\) on \([a, b]\) such that \(\|f_n^\alpha(\mathcal{P}) - \int_a^b f_n d\alpha\| < \varepsilon\) for all \(n\) whenever \(\mathcal{P}\) is a free tagged partition of \([a, b]\) that is subordinate to \(\delta\). Since \(\{f_n\}\) converges pointwise to \(f\), there
exists \(k \geq N \) such that \(\| f^\alpha(\mathcal{P}) - f^\alpha_k(\mathcal{P}) \| < \varepsilon \). Hence

\[
\| f^\alpha(\mathcal{P}) - L \| \leq \| f^\alpha(\mathcal{P}) - f^\alpha_k(\mathcal{P}) \| + \| f^\alpha_k(\mathcal{P}) - \int_a^b f_k \, d\alpha \| + \| \int_a^b f_k \, d\alpha - L \| < 3\varepsilon.
\]

It follows that \(f \) is McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha \) and

\[
\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha.
\]

Now, we will prove the Dominated Convergence Theorem for McShane-Stieltjes integrable functions.

Theorem 2.5 (Dominated Convergence Theorem). Let \(\alpha \) be an increasing function on \([a, b]\). Let \(\{f_n\} \) be a sequence of vector-valued McShane-Stieltjes integrable functions on \([a, b]\) with respect to \(\alpha \) and suppose that \(\{f_n\} \) converges pointwise to \(f \) on \([a, b]\). Let \(F^\alpha_n(x) = \int_a^x f_n \, d\alpha \). If there exists a real-valued McShane-Stieltjes integrable function \(g \) on \([a, b]\) such that \(\| f_n \| \leq g \) for all \(n \) and if \(\{F^\alpha_n\} \) is a Cauchy sequence in \(X \), then \(f \) is McShane-Stieltjes integrable on \([a, b]\) and

\[
\int_a^b f \, d\alpha = \lim_{n \to \infty} \int_a^b f_n \, d\alpha.
\]

Proof. Let \(\varepsilon > 0 \), and \(G^\alpha(x) = \int_a^x g \, d\alpha \). Then \(G \) is absolutely continuous on \([a, b]\), and there exists \(\eta > 0 \) such that

\[
\left\| \sum_{i=1}^k (G^\alpha(d_i) - G^\alpha(c_i)) \right\| < \varepsilon
\]

whenever \(\{[c_i, d_i] : 1 \leq i \leq k\} \) is a finite collection of non-overlapping intervals in \([a, b]\) that satisfy \(\sum_{i=1}^k (d_i - c_i) < \eta \). By Egoroff's Theorem, there exists an open set \(O \) with the Lebesgue measure \(\mu(O) < \eta \) such that \(\{f_n\} \) convergence uniformly to \(f \) on \([a, b] - O\). Choose a positive integer \(N \) such that

\[
\left\| \int_a^b f_n \, d\alpha - \int_a^b f_m \, d\alpha \right\| < \varepsilon \quad \text{and} \quad \| f_n(x) - f_m(x) \| < \varepsilon
\]

for all \(m, n \geq N \) and for all \(x \in [a, b] - O \). Let \(\delta_g \) be a positive function on \([a, b]\) such that

\[
|g^\alpha(\mathcal{P}) - \int_a^b g \, d\alpha| < \varepsilon \quad \text{and} \quad \left\| f^\alpha_n(\mathcal{P}) - \int_a^b f_n \, d\alpha \right\| < \varepsilon
\]

for \(1 \leq n \leq N \) whenever \(\mathcal{P} \) is a free tagged partition of \([a, b]\) that is subordinate to \(\delta_g \). Define a positive function \(\delta \) on \([a, b]\) by

\[
\delta(x) = \begin{cases}
\delta_g(x), & \text{if } x \in [a, b] - O \\
\min\{\delta_g(x), \rho(x, O^c)\}, & \text{if } x \in O
\end{cases}
\]
where \(\rho(x, O^c) = \inf \{|x - y| : y \in O^c \} \). Suppose that \(P \) is a free tagged partition of \([a, b]\) that is subordinate to \(\delta \) and fix \(n > N \). Let \(P_1 \) be the subset of \(P \) that had tags in \([a, b] - O \) and let \(P_2 = P - P_1 \). Using the weak Saks-Henstock lemma (Lemma 2.2) and \(\mu(P_2) < \delta \)

\[
|f_n^\alpha(P) - f_n^\alpha(P)| \leq |f_n^\alpha(P_1) - f_n^\alpha(P_1)| + |f_n^\alpha(P_2) - f_n^\alpha(P_2)| \\
\leq \epsilon(\alpha(b) - \alpha(a)) + g^\alpha(P_2) \\
\leq \epsilon(\alpha(b) - \alpha(a)) + |g^\alpha(P_2) - G^\alpha(P_2)| + |G^\alpha(P_2)| \\
\leq \epsilon(\alpha(b) - \alpha(a)) + 2\epsilon + \epsilon \\
= \epsilon(\alpha(b) - \alpha(a) + 3).
\]

Hence,

\[
\left| f_n^\alpha(P) - \int_a^b f_n d\alpha \right| \\
\leq \left| f_n^\alpha(P) - \int_a^b f_n d\alpha \right| + \left| \int_a^b f_n d\alpha \right| + \left| \int_a^b f_n d\alpha - \int_a^b f_n d\alpha \right| \\
< \epsilon(\alpha(b) - \alpha(a) + 2) + \epsilon + \epsilon.
\]

Hence \(\{f_n\} \) is uniformly McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha \).

By Theorem 2.4, \(f \) is McShane-Stieltjes integrable on \([a, b]\) with respect to \(\alpha \) and \(\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f d\alpha \).

\[\square \]

ACKNOWLEDGEMENT

The authors thank the referees for valuable suggestions which improved and broadened the results in the final manuscript.

REFERENCES

(J. H. Yoon) Department of Mathematics Education, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea

E-mail address: yoonjh@cbucc.chungbuk.ac.kr

(B. M. Kim) Department of General Arts, Chungju National University, Chungju, Chungbuk 380-702, Korea

E-mail address: bmkim6@hotmail.com