Two-Dimensional Model of Hidden Markov Lattice
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ABSTRACT

Although a number of variants of 2D HMM have been proposed in the literature, they are, in a word,
too simple to model the variabilities of images for diverse classes of objects; they do not realize the
modeling capability of the 1D HMM in 2D. Thus the author thinks they are poor substitutes for the HMM
in 2D. The new model proposed in this paper is a hidden Markov lattice or, we can dare say, a 2D HMM
with the causality of top-down and left-right direction. Then with the addition of a lattice constraint,
the two algorithms for the evaluation of a model and the maximum likelihood estimation of model
parameters are developed in the theoretical perspective. It is a more natural extension of the 1D HMM.
The proposed method will provide a useful way of modeling highly variable patterns such as offline cursive
characters.
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1. Introduction

Hidden Markov model or HMM is a well-known
statistical modeling tool for a variety of highly
variable time-series or time-series—like signals. Its
success, however, is limited to the analysis of 1D
signals with an intrinsic order relation. Motivated
by the success of the HMM, a number of re-

searchers have tried to apply the model or its
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extensions to spatial 2D signals like digital images.
The efforts thus far, however, have not been
successful, although not a total failure either. This
paper centers on the theoretical development of a
2D extension of the HMM.

The research on Markov models for 2D patterns
is not new. It has been studied in several related
areas such as image processing and character
recognition. Although historically later to appear,
the pseudo 2D HMM or P2DHMM is a simplified
model of two-level hierarchy[1]; it is essentially a
1D HMM with vertical frame observations[2]. The



P2DHMM is cost-effective for modeling patterns
free of global shape deformation. This is also
generally true of the truly 2D model of Markov
random field or MRF[3,4]. The MRF model has
been studied and used by numerous researchers
from diverse fields who are grappling with texture
analysis, image restoration and segmentation [5].
It is, therefore, not strange that there are a large
number of variants like Markov mesh and hidden
Markov random field. For reasons of computational
complexity most of the researchers adopted the
causal types of MRFs for modeling images. Al-
though there are studies on symmetric local
dependence without directional causality, those
methods suffer from cost-ineffectiveness problems
and thus often resort to heuristic recipes. There is
one study referring to 2D planar HMMI6). The
paper, however, focussed mainly on DP-based
image match and made just a passing remark on
the use of HMM without mathematical and/or
practical development.

This paper describes a new development of 2D
HMM. Distinct from the previous oversimplified
Markov random field, the new model is called a
hidden Markov lattice or HML that involves the
causality of top—-down and left-right direction.
This causality, although not explicitly present in
images, allows an efficient computation. In addition
this paper introduces a lattice constraint under
which HML can be locally scaled up or down just
like the 1D time-warping of HMM. With the lattice
constraint, the algorithms for evaluation of a model
and maximum likelihood estimation of model
parameters are developed.

The proposed model is different from the MRF
in that homogeneity (and isotropism, of course) is
not enforced. The effect is that many more in—
teresting forms of image variations including local
shape distortions can be modeled more system-—
atically. In other words, with the HML, many more
types of image distortions can now be explained

with the most likely Markov lattice constructed by
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the decoding algorithm.

In the rest of the paper, we will first review the
conventional HMM briefly in Section 2, and then
address the definition of the HML and the DP-
based evaluation algorithm in Section 3. The
description of the algorithm is the 2D version of
Viterbi algorithm. Therefore the model decoding in
Section 4 will be made short with a few additional
remarks. Section 5 presents an MLE-based re-
estimation algorithm for training model parameters,
which is the most difficult task of the three. The
final section discusses implications of the proposed

method, and then concludes the paper.

2. Hidden Markov Model

HMM is a statistical model for analyzing time
sequential signal that can be viewed as one-
dimensional. The time series data is characterized
by a strict order that can be described by the time
evolution of the model states. In the HMM theory,
the evolution is modeled by an underlying Markov
chain with probabilistic transitions between states.
This is the first stochastic process of the HMM.
The second process concerns the generation of
symbols that can be observed outside, hence
termed an observational process.

The conventional HMM is not of direct concern
here. But a formal description may be helpful —
or even required — for a clear and accelerated
understanding of the theoretical aspect of HMM
extensions. Let us first denote g, t = 1, ... a sto-
chastic process of Markov chain, and S the set of
distinct states that the model takes. Formally the
HMM is characterized by three sets of probabilistic
parameters, namely :

® State transition probability, A={a; : a; = p
(gre1=j1 g =1, i,j€ S}. This is the probability of
changing states from [ at time ¢ into state j at
time t+ 1. The parameters satisfy the stochastic
constraint a@; > 0 and Xjes ay = 1.

e (Observation probability, B = {bi(k) @ bik) =
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px; =k | g = 1)}. This is the probability distribution
function for symbol observation. These parameters
are also subject to the constraint 2 ,ev b; (V) = 1
where V is the set of observable symbols in
state 1.

® Initial state transition probability, 7={ 7 7
= plg1 = 1)}. This 1s the probability of Markov chains
starting at state i, and satisfies ey 7= 1.

With these parameters HMMs can describe
diverse patterns with a wide range of variability.
The conventional HMM is often denoted as A = (A4,
B, n).

Since the first introduction of an efficient algo-
rithm for estimating HMM parameters, several
alternative estimation methods have been proposed
for the purpose of improving the discrimination
power or simplifying the calculation. But the Baum
et al’'s method[7] has always been the basis of
elaboration, and the same is true of the method to
be described in this paper. The original proof of
Baum-Welch algorithm dealt with specifically with
a finite alphabet and general output distribution. A
more generalized proof was based on constructing
an information-theoretical @-function, i.e., Kullback-
Leibler number(8]. The same discussion will be
given in Section 5, and it will not be duplicated
here. For comparison to be made later in the section,
the reestimation formula for transition parameters

are given by
a’i=2 P(X,Qtﬂ:l‘,Qr:ﬂ A )/Z] 2 P(X,Qt—]:i,Qz:j| A

It is almost of the same form as those found in
Section 5, so the rest will not be given here. For
more detailed description, refer to the paper by
Rabiner{9].

3. Hidden Markov Lattice

3.1 Markov Lattice

A stochastic process X ={X,, n=1, 2, ... } where
each variable taking on a finite number of possible

values is a Markov chain if there is a fixed

probability
PiXn157 ) Xo=l, Xn 1500 1, ..., Xi=01, Xo=io}=Py

for all states i, i1, ..., in1, [, j and n = 0. This type
of Markov chain is sufficient for modeling one-
dimensional time-series signals where a variable
is related to only one or less variable that is
preceding it when viewed in time dimension. In
higher dimensions, however, this type of simple
chain structure is not adequate, and one or more
additional variables are required. Let us, from now
on, limit our discussion to two-dimensional signals
such as a rectangular image consisting of a lattice
of pixels. Needless to say, the model will be easily
extended to third or higher dimensions.

There are two equivalent ways of defining
random configurations of points on a lattice. One
is based on the formulation of statistical mechanics
according to J. Gibbs. Called as Gibbs ensemble
or Gibbs random field, it is generally accepted as
the simplest useful mathematical model of discrete
or lattice gas. The second class of random fields
is Markov random field, whose foundation dates
back to the physics literature on ferromagnetism
originating in the work of E. Ising in 1925[10]. This
extends in a simple way the notion of Markov
process with one dimensional, integer valued, time
to the case of higher dimensional, lattice valued,
space parameter.

Let L={(, j): 1<i<M, 1<j<M]} be a two-
dimensional rectangular lattice with L = MN sites
arranged as a planar mesh. M and N denote the
vertical and horizontal dimension of the lattice
respectively. For convenience let us denote the
state or site identifiers as [ = 1, ..., L in row—major
order. For each site { in the lattice we find a set
of sites which are adjacent to and thus condition
the state of the current site. It is called a neigh-
borhood. The neighborhood of a site i in the lattice
L is a set of sites that can influence behavior of
the site i. In general the neighborhood system is
defined as follows: 7={7; < L: i L}. Here 7,



is the neighborhood of a site i, and satisfies that

i €7 and j € 7; if and only if { & 7. Then the ;

definition of the MRF follows: given a lattice L and
a neighborhood 7, a random field X = {X}, j& L}
is an MRF if and only if

P(Xj=x1X: = xi, iIEL-{j}) = P(X; = x| XT="x;, e
7, VIEL

By definition, the MRF is homogeneous and
isotropic. This property is highly appropriate for
modeling systems of homogeneous gas particles or
fluids, and restoring images corrupted by random
noise. But the problem of such a noncausal random
field model is that there is no known efficient and
effective algorithm other than the formulation
based on the Gibbs distribution. Several research—-
ers have tried to solve the problem by introducing
causality in the lattice. Two recent studies were
reported by Park et al [11,12].

However, the MRF is still insufficient for mod-
eling general image distortions other than random
corruption of images. There are many more types
of characteristic variations of images arising not
from purelv random sources but from sources
explainable in statistical terms. This is particularly
true of hand-written script. Such images involve
local distortions characteristic of the target pat-
terns in the images. We believe that they should
be modeled with a new type of modeling framework
that can represent various local variations. One
proposed in this paper is based on the model of
Markov lattice.

Just like an MRF, a general Markov lattice has
it that a site is determined by a set of neighbor
sites. The difference is lies in the definition of
anisotropic inhomogeneous click potential which is

defined as a probabilistic transition parameter
PXj=xiXi=xi, i= 7)==y Py VIEL
satisfying the stochastic constraint

P; =20,
Zjém’ P,‘j: 1.

Two-Dimensional Model of Hidden Markov Lattice 569

It is not necessarily that Py = P and Py = Pi+ij+k,
and this property allows the modeling of local

spatial distortion.

3.2 2D Hidden Markov Lattice

Based on the concept of the Markov lattice of
the preceding section and the traditional HMM
theory, we can define a two-dimensional hidden
Markov lattice (HML). The model to be described
henceforth is causal and allows an efficient
computation. Formally the HML is defined as

follows :

® Site transition parameters

In a multi-dimensional space free of temporal
arrow it is difficult to justify the introduction of
any order, or causality. However, we have assumed
an intuitive causality to reduce the computational
requirement in the following way: first, there are
two types of transitions: the downward transition
from the upper neighborhood and the rightward
from the left neighborhood. Second, we restrict the
site transitions to those to and from the set of
8-neighbors.

The resulting mesh topology of the model is
shown in Figure 1. For a given node, say j, the
set of upper neighbors that can act as an upper
source node is denoted by #,'. Similarly the left
neighborhood is denoted by 27/. The right and the
lower neighborhoods 7};" and 7/J” respectively de-
note the sets of right and the lower destination
nodes of rightward and downward transitions
respectively from the site j. Using the two types
of transitions between neighbor sites, we can
construct a complete lattice Y of 2D HML states
corresponding to an image, a lattice of pixels.

In 2D space there are two types of transitions:
vertical downward transitions and horizontal right-

ward transitions, each parameterized as follows :

ay' =pla=ilauv=h), h& 7,"=(-N-1, j-N, j-N+1, j},
@i =plqu=ilgu1=D), i€ 7,"={j-N-1, j-1, j+ N-1, j}
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Figure 1. HML mesh topology.
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These parameters define the causality, vertical
and downward, as assumed before. Also it is noted
that the following stochastic constraints are sat-
isfied

—

Skerr @ =1, ax =0,

Sieom ait =1, ai' =0 (1)

Here 77jR and 7,” denote the right and the lower
neighborhood respectively.

® Observation parameters

In the conventional HMM, the observation is
another stochastic process which is a probabilistic
function of an underlying Markov chain. The
observation of an HML is an image X = {x,, € Q:
1=u<U, 1<v<V}in the rectangular arrangement
of W=UV pixels. @=1{1, 2, .., K } is a set of K
color or gray scale values. Here again let us
identify the pixels in the row-major order as u =
1, .., W.

The observation of of X is a function of the
above lattice process parameters. The observation
symbols xu, are independent of all the others. This
type of conditional independence assumption is
grossly inaccurate, but allows an efficient com—
putation and usually works well enough. The

parameters are '

bi{(v) = Plx,=vlqu=j), JEL, vEQ,

where

ZU b](U) = 1 _] = L

Every site in an HML is conditioned by its
neighboring sites, and the collection of the sites
organizes a lattice through an artificial causal
chain. Each pixel in an image X is observed from
a HML site as a result of a conditionally inde-
pendent process of the corresponding site. The
capability of modeling spatial distortions or spectral
variations depends on the organization of neigh-
borhood system (as in the case of MRF) or the
transition probability parameters of the 2D HML.

3.3 Lattice Process

Now, given the causality for a 2D lattice, we can
proceed to define the following two recurrence
relations based on the Markovian property and the
Bellmans optimality principle of dynamic program-
ming. They are the forward probability and the
backward probability:

R - .
@ ) = maxes,ju, ienjt @i Ay bilxy) a 1D,

J=1 ., L u=1 ., W (2)

B.(J) = maxee R, 1€7,0 ajkaaﬂt bilxyr1) Bur1(k)
Jj=L, ..., 1, u=w, . 1. (3)

The forward probability «.(j) is the maximum
probability of observing the partial region of the
image Xiu=x1 X2 ... x, from the partial mesh of
states Y1, = »1 y2 ... ;. The backward probability 8.
(/) denotes the probability of observing the remaining
image region Xu+1.w = Xy+1 Xu+ 2 ... Xw after x,, from
the remaining partial mesh of states Y;+1.=vj+1

Yi+2 .. ¥s. The boundary conditions are:

a1(1) = bilxy)

@) =maxie,n ai bixy) @pa), j=1,.. N,
u=2, ..,V

Bwll)=1

B () = maxike,r ax bilxur1) Bur1(k),
j=L, .., L-N+1, u=W, .., W-V+1.



The forward DP continues while keeping the

mesh lattice-related information as

(R*, i*)y () = argmax resju, s G - an' bilxs)
X @ (D),

j=i, ., L,u=1 ., W (4a)

(k*, "), (j) = argmax keqm, 17D Gk "ait bilxuin)
X Bu+](k)y
j=L, ..l u=W,..,1 (4b)

Here, let us write

i* = Left(j)

h* = Up(j)

k* = Right(j)

I* = Down{j)

Then we have another requirements for building
a complete mesh lattice of states as the result of

computation in (2) and (3).

Left(h*) = Up(i*),

Down{k*) = Right(I*) 5)
and
@ ,(j) = max pe,ju a;ul bilxy) au1(Rp), (6a)

j=1, N+1, ., (M-DN+1,
u=V+1, 2V+1, .., (U-DV+1,

B uU) = max jepD aj[‘ belxyi1) Bu+ (L), (6b)
j=L, L-N, .., N,
u=w-v, w-2v, .., V.

Here Ry = Right" (), L= Lef" (), and each
indicates the rightmost boundary node of A and the
leftmost boundary node of [. The power notation
is defined by the recursion for all n as a composite

function:

Right "(x) = Right(Right " (x))
Left "(x) = Lefe(Left " '(x)).

The above equations (5) and (6) constitute the
lattice constraints for a complete mesh lattice.
Using the forward and backward probabilities of

(2) and (3), we can complete the calculation as

PXIA)=max; au() [T amw '] Bu) (D
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Here again any complete mesh lattice requires
that

he = yu-vii = Right(he-1) and ho = A,
Ji = Yurk = Right(x-1) and jo = J,

the condition for sewing together the forward and
the backward lattice patches to obtain a complete
rectangular lattice. The resulting mesh of states
will be a planar lattice locally warped to model the
locally deformed 2D patterns. And it is noted that
this type of two-dimensional lattice model is
different from the second order Markov chain[13]
in that this does not impose the lattice constraint
which leads to the construction of a regular mesh

of states.

4. Lattice Decoding

Apart from patterned texture or random noise
modeling, an observed image X, in general, does
not possess the Markovian property, and thus it
can not be modeled properly with an MRF. In this
paper an image is defined as a realization of a
stochastic process that, in turn, is defined over an
underlying Markov Lattice. Each observation is a
function of the corresponding site of the Markov
lattice but is assumed to be independent of other
observations. The individual site states of a Markov
lattice are determined based on their neighborhood.
But, since the states in the lattice depend on their
location, the model is also distinguished from the
homogeneous MRF that is not aware of model
topology.

The decoding of 2D HML A is the problem of
finding the optimal Markov lattice Y* of maximum
likelihood given an observation image X. Mathe-
matically it is defined as the task of maximizing
P(X, Y| A) over all possible chains Y. Y is a com~
plete mesh lattice of sites. In the preceding section,
we have already defined the forward probability in
(2) in terms of the best realization of initial partial

lattices. The final probability is the very result of
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decoding. Finally the optimal Markov mesh lattice
can be obtained by backtracking the result of
forward pass using the information of (4) after the
forward pass is over.

In standard theory of hidden Markov modeling,
the model evaluation is based on the concept of
total probability of observing an input signal given
a model, which is given by

PXIA) = 2 PIXLIA) P(LIA)

Although correct in statistical context, there is
a difficulty in interpreting the result of computation.
Namely, given a model of planar topology, one is
asked whether it is possible to generate the
rectangular image without regard to the topology.
This problem leads us to define the optimization
criterion as the joint probability of the lattice of
states as well as the input image. Formally it is

given by the following formula
PXIA) =max;, e [T " aw w'] Bul)

as is given in the preceding section. In effect, this
is the equation for decoding the model A given an

image X.

5. Parameter Estimation

The parameter estimation problem is concerned
with finding the optimal set of model parameters
given a set of typical samples. Let us write Y be
a Markov mesh chain given a sample image X. The
likelihood of observing X from the A of the model

is
P(X|A) =2y PXXYIA).

Each term in the right hand side is the joint

probability written as
P(X,Y'/l) = Hu:IW [ayufl,yuﬂ awa,yul b_vu(Xu)]. 8
By taking the logarithm of it, we have

log P(X,Y' A)= Zu=1w (10g ayu*l,yua‘klog Qyu Vv.Vul
-+ lOg byu(Xu)) (9)

Following the line of Baum’s reasoning with the
Q-function{7], we can now define a similar aux-
iliary for the 2D HMM as follows:

QUA, AY=1/P(X|A) Ty PX, YIA) log P(X,
YiA")
=1/P Sy v s PX, YIA)X " (log a’
“+log @'t +log b
= 1/P 3 % Ty PX, yua=i, v=ilA) log @’
FUP Tk Sy Su PX, yu v=h, yul A) log @’
+1/P 2 Xk 2w PX, vl A) log b7
10

where P = P(X|A). The last expression can be

reorganized into
QUA, A =34 T, oy log ay' + 50 T dy log
a/ijid + X 2k ejx log b (xx) an
where

Chj = Zu P(X. y'ufl"'l', yu:],A>/P(X,A>
dj=Zu PX, yev=h, v=jlA)/ P(XIA)
eik ~ Zuixzrk P(X, yu:j' /1)/214 P(Xy }/u:ﬂ/l)

Then the resulting formulae for re—estimating

the parameters are as follows:

a/ij = Zu P(X,)/wl:l.,)/u:j,/l)/ Zj > P(X,J/u I:i,

il A) (12)
a%' = Zu PXyu v=hyil )/ 5 S PXyuvh,
vl A) (13)

,jk = Zuixu:k P(X,yu:]l A) / Zk Zu:xuik P(X,yu:]' A )
= Zuixu:k P(X,yu:jl A) / Zu P(X,yu:]l /l) (14)

Let us consider the @—function of EM algorithm
as a function of A’. Although the above function
has more parameters than the corresponding
function of 1D HMM, they are essentially of the
same form. Therefore we can say the above
re-estimation algorithm converges. It is stated in

the following theorem.

[Theorem 1] If Q(A, A")Y=Q(A, A'), then P(X|
A= P(X|A). The equality holds when P(X|A')
= P(X|A).

Proof: From the concavity of the log function



it follows that

log P(XIA")/PXIA) = log [Zy PXYIAY/PXIA)]
=log [Zy PXYIA)/PXIA) X PXYIADYP
(X, YI1)]
=2y PIX YA/ PXIA) xlog [PXY]A")
/PXY1TA)]
=QA, A - (A, A)

where the inequality is due to the well-known
Jensens inequality. The above inequality says that
A is a critical point of P(X]A) if and only if it

is a critical point of @ as a function of A'. QED.

According to the above result, if the newly
estimated model A’ makes the right-hand side
positive, the algorithm is guaranteed to improve
the model likelihood P(X!A’). The improvement
then results in /A’ that maximizes the @-function

unless a critical point is reached[7].

6. Discussion and Conclusion

The most essential difference between 1D time
series data and 2D image is the existence or
absence of intrinsic order between components in
the signals. Thus we have raised the issue of
introducing a putative order in order to utilize the
sequential processing of modern computers.

The MRF as a model for 2D image is described
by a small number of parameters defining clique
potential (instead of transition probability) subject
to the global homogeneity condition. Unlike the
MRF or Markov mesh field models, the 2D HML
of the paper was defined based on the concept of
the probabilistic function of Markov mesh lattice.
The lattice is a natural extension of the sequential
chain. Therefore the HML is a natural extension
1D HMM, and a truer 2D HMM.

The causality referred to in the paper is not new;
it has already been used in the previous studies
on mesh models such as mesh random field. One
distinguishing feature of the current method is the

lattice constraint that constrains the search for
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only complete lattices. Naturally this has led to the
use of Viterbi-type of decoding algorithm. Another
noteworthy feature is that, with the introduction
of site-to-site transition parameters, local spatial
distortions can be modeled. We believe that this
type of capability should be considered in modeling
patterns of high variability, which is highly
unpredictable globally, and thus less likely to be
parameterized, but can be anticipated and modeled
locally, remotely based on the study the psy-
chomotor of handwriting. The author believes that
the Markovian assumption fits appropriately with
the latter points.

In Section 3 we have assumed a model topology
with 2™ order neighborhood in addition to di-
rectional causality. This will enable us to reduce
the computational load drastically from OL*'W) =
OWNUV) of general ergodic models down to
O(LW) = O(MNUV) without decreasing the mod-
eling power in general.

The 2ID HML proposed in this paper is different
from HMMRFs or mesh MRFs, and it is true even
in the basic assumptions. The previous field
models are too simple to model a wide range of
shape variations occurring in images. But the HML
is capable of decoding strictly local shape de-
formation, a task that may be called as dynamic
space warping, in contrast to the dynamic time
warping. The structure of the model is better suited
for local nonlinear variation of a reference image,
be it scaling or distortion either globally or locally.

The final remark is that the HML is not limited
to two~-dimensional space modeling, therefore the
model can be called simply as HML instead of 2D
HML. For 2D case, however, it is certain that the
model will make a useful tool in such tasks as
off-line handwritten character recognition, nonlinear

motion field analysis.
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