GRÖBNER-SHIRSHOV BASES
FOR REPRESENTATION THEORY

SEOK-JIN KANG AND KYU-HWAN LEE

ABSTRACT. In this paper, we develop the Gröbner-Shirshov basis theory for the representations of associative algebras by introducing the notion of Gröbner-Shirshov pairs. Our result can be applied to solve the reduction problem in representation theory and to construct monomial bases of representations of associative algebras. As an illustration, we give an explicit construction of Gröbner-Shirshov pairs and monomial bases for finite dimensional irreducible representations of the simple Lie algebra sl_3. Each of these monomial bases is in 1-1 correspondence with the set of semistandard Young tableaux with a given shape.

1. Introduction

The Gröbner basis theory for commutative algebras was introduced by Buchberger [7] and provides a solution to the reduction problem for commutative algebras. More precisely, it gives an effective algorithm of computing a set of generators for a given ideal of a commutative ring which can be used to determine the reduced elements with respect to the relations given by the ideal. In [1], Bergman generalized the Gröbner basis theory to associative algebras by proving the Diamond Lemma.

On the other hand, the parallel theory of Gröbner bases was developed for Lie algebras by Shirshov [12]. The key ingredient of the theory is the so-called Composition Lemma which characterizes the leading terms of elements in the given ideal. In [2], Bokut noticed that Shirshov’s method works for associative algebras as well, and for this reason, Shirshov’s
theory for Lie algebras and their universal enveloping algebras is called
the Gröbner-Shirshov basis theory.

The Gröbner-Shirshov bases for finite dimensional simple Lie algebras were constructed explicitly in a series of papers by Bokut and Klein
[4, 5, 6]. In [3], Bokut, Kang, Lee and Malcolmson developed the theory of Gröbner-Shirshov bases for Lie superalgebras and their universal
enveloping algebras. They unified the Gröbner-Shirshov basis theories for Lie superalgebras and for associative algebras and gave an explicit
construction of Gröbner-Shirshov bases for classical Lie superalgebras.

In this paper, we develop the Gröbner-Shirshov basis theory for the representations of associative algebras. More precisely, let \(\mathcal{A} \) be a free
associative algebra and consider a pair \((S, T)\) of subsets of \(\mathcal{A} \). Let \(J \)
be the two-sided ideal of \(\mathcal{A} \) generated by \(S \) and let \(A = \mathcal{A}/J \) be the
algebra defined by \(S \). Also let \(I \) be the left ideal of \(A \) generated by \((\text{the image of}) \ T \) and set \(M = A/I \). Then \(M \) becomes a left \(A \)-module and we
would like to solve the reduction problem for the \(A \)-module \(M \). The main
problem lies in the fact that we should deal with two-sided ideals and left
ideals in a unified manner to produce a generalized version of Shirshov's
Composition Lemma for the representations of associative algebras. We
overcome this difficulty by introducing the notion of Gröbner-Shirshov
pairs. It is a pair of subsets \((S, T)\) of the free associative algebra \(\mathcal{A} \) that
are closed under certain compositions and the set of \((S, T)\)-reduced words
forms a monomial basis of the \(A \)-module \(M \).

We also show how to apply our Gröbner-Shirshov basis theory for
representations to solve the reduction problem and to construct monomial
bases of integrable highest weight modules over symmetrizable Kac-
Moody algebras. As an application, we give an explicit construction of
Gröbner-Shirshov pairs and monomial bases for finite dimensional
irreducible representations of the simple Lie algebra \(sl_3 \). Each of these
monomial bases is in 1-1 correspondence with the set of semistandard
Young tableaux with a given shape.

Our result is a very general one that can be applied to the representa-
tion theory of various interesting algebras such as finite dimensional
simple Lie (super)algebras, Kac-Moody (super)algebras, (affine) Hecke
algebras, and so on. The work on the representation theory of classical
Lie algebras and Hecke algebras is in progress and will be published
elsewhere.
ACKNOWLEDGEMENTS. Part of this work was completed while the authors were visiting the Department of Mathematics of Yale University in the spring of 1999. We are very grateful to Professors Peter W. Jones, George B. Seligman and Efim Zelmanov for their hospitality during our stay at Yale University. We would also like to thank Professor L. Bokut for many helpful discussions.

2. Gröbner-Shirshov pair

Let $X = \{x_1, x_2, \ldots \}$ be a set of alphabets indexed by positive integers. Define a linear ordering on X by setting $x_i < x_j$ if and only if $i < j$. Let X^* be the semigroup of associative words on X. We denote the empty word by 1 and the length of a word u by $l(u)$ with $l(1) = 0$. We consider two linear orderings $<$ and \ll on X^* defined as follows:

(i) $u < v$ for any nonempty word u; and inductively, $u < v$ whenever $u = x_iu'$, $v = x_jv'$ and $x_i < x_j$ or $x_i = x_j$ and $u' < v'$ with $x_i, x_j \in X$;
(ii) $u \ll v$ if $l(u) < l(v)$ or $l(u) = l(v)$ and $u < v$.

The ordering $<$ (resp. \ll) is called the lexicographic ordering (resp. length-lexicographic ordering).

Let A_X be the free associative algebra generated by X over \mathbb{C}. Given a nonzero element $p \in A_X$ we denote by \bar{p} the maximal monomial appearing in p under the ordering \ll. Thus $p = \alpha \bar{p} + \sum \beta_i w_i$ with $\alpha, \beta_i \in \mathbb{C}$, $w_i \in X^*$, $\alpha \neq 0$ and $w_i \ll \bar{p}$. The α is called the leading coefficient of p and if $\alpha = 1$, p is said to be monic.

Let p and q be monic elements of A_X with leading terms \bar{p} and \bar{q}. Let S be a set of monic elements of A_X. We define the composition of p and q as follows.

Definition 2.1. (a) If there exist a and b in X^* such that $\bar{p}a = b\bar{q} = w$ with $l(\bar{p}) > l(b)$, then the **composition of intersection** is defined to be $(p, q)_w = pa - bq$.

(b) If there exist a and b in X^* such that $a\bar{b} = \bar{q} = w$, then the **composition of inclusion** is defined to be $(p, q)_w = apb - q$.

(c) A composition $(p, q)_w$ is called **right-justified** if $\bar{p} = a\bar{q} = w$ for some $a \in X^*$.
EXAMPLE 2.2. Let $X = \{x_1, x_2, x_3, x_4\}$.
(a) If $p = x_4 x_2^2 + x_2 x_4 x_3$ and $q = x_2^2 x_3 - x_4$, then we have two possible compositions of intersection:

\[(p, q)_{x_4 x_2^2 x_3} = (x_4 x_2^2 + x_2 x_4 x_3) x_3 - x_4 (x_2^2 x_3 - x_4)\]
\[= x_2 x_4 x_3^2 + x_2^2,\]

\[(p, q)_{x_4 x_2^2 x_3} = (x_4 x_2 + x_2 x_4 x_3) x_2 x_3 - x_4 x_2 (x_2^2 x_3 - x_4)\]
\[= x_2 x_4 x_3^2 x_2 x_3 + x_2 x_3^2 x_4.\]

(b) If $p = x_2 - 1$ and $q = x_4 x_2 x_3 - x_1 x_2$, then we have a composition of inclusion:

\[(p, q)_{x_4 x_2 x_3} = x_4 (x_2 - 1) x_3 - (x_4 x_2 x_3 - x_1 x_2) = -x_4 x_3 + x_1 x_2.\]

(c) If $p = x_1 x_2 x_1 x_4 + x_2 x_3$ and $q = x_1 x_4 + x_4$, then we have a right-justified composition:

\[(p, q)_{x_1 x_2 x_1 x_4} = x_1 x_2 x_1 x_4 + x_2 x_3 - x_1 x_2 (x_1 x_4 + x_4) = x_2 x_3 - x_1 x_2 x_4.\]

Let (S, T) be a pair of subsets of A_X. We define a congruence relation on A_X as follows.

DEFINITION 2.3. Let $p, q \in A_X$ and $w \in X^*$. We say that p and q are congruent to each other with respect to the pair (S, T) and w, denoted by $p \equiv q \mod (S, T; w)$, if $p - q = \sum \alpha_i a_i s_i b_i + \sum \beta_j c_j t_j$, where $\alpha_i, \beta_j \in \mathbb{C}$, $a_i, b_i, c_j \in X^*$, $s_i \in S$, $t_j \in T$ with $a_i s_i b_i \ll w$ and $c_j t_j \ll w$ for each i and j.

REMARK. If $T = \emptyset$, we simply write $p \equiv q \mod (S; w)$. In this case, the congruence relation is defined by the two-sided ideal of A_X generated by S as we can see in the discussion below.

EXAMPLE 2.4. Let $S = \{x_1 x_2 + x_1\}$ and $T = \{x_3 x_4 - x_1\}$.
(a) If $p = x_2 x_3 x_2$, $q = x_3 x_4 + x_2 x_3 + x_2^2 x_3$, $w = x_3^2 x_3$, then $p \equiv q \mod (S; w)$.

(b) If $p = x_2 x_3 x_4 - x_1 x_2$, $q = x_2 x_3 x_2 + x_2^2 x_3 + x_2 x_1 - x_1 x_2$, $w = x_2^2 x_3^2$, then $p \equiv q \mod (S, T; w)$.

Let (S, T) be a pair of subsets of A_X. If J is the two-sided ideal in A_X generated by S, then we say that the algebra $A = A_X / J$ is defined by S. Let I be the left ideal generated by (the image of) T in A. Then we say that the left A-module $M = A/I$ is defined by the pair (S, T).
The image of \(p \in A_X \) in \(A \) and \(M \) under the canonical quotient maps will also be denoted by \(p \) as long as there is no peril of confusion.

A set \(S \) of monic elements of \(A_X \) is said to be **closed under the composition** if for any \(p, q \in S \) and \(w \in X^* \) such that \((p, q)_w \) is defined, we have \((p, q)_w \equiv 0 \mod (S; w) \). In this case, we say that \(S \) is a **Gröbner-Shirshov basis** for the algebra \(A = A_X / J \) defined by \(S \). A set \(T \) of monic elements of \(A_X \) is said to be **closed under the right-justified composition with respect to \(S \)** if for any \(p, q \in T \) and \(w \in X^* \) such that a right-justified \((p, q)_w \) is defined, we have \((p, q)_w \equiv 0 \mod (S, T; w) \).

Definition 2.5. (a) A pair \((S, T)\) of subsets of monic elements of \(A_X \) is called a **Gröbner-Shirshov pair** if \(S \) is closed under the composition, \(T \) is closed under the right-justified composition with respect to \(S \), and for any \(p \in S \), \(q \in T \) and \(w \in X^* \) such that \((p, q)_w \) is defined, we have \((p, q)_w \equiv 0 \mod (S, T; w) \). In this case, we say that \((S, T)\) is a **Gröbner-Shirshov pair** for the \(A \)-module \(M = A/I \) defined by \((S, T)\).

(b) A word \(u \in X^* \) is said to be \((S,T)\)-**reducible** if \(u \neq a \bar{z} b \) and \(u \neq c \bar{t} \) for any \(s \in S \), \(t \in T \) and \(a, b, c \in X^* \). Otherwise, the word \(u \) is said to be \((S,T)\)-**reducible**. If \(T = \emptyset \), we will simply say that \(u \) is \(S\)-**reducible** or \(S\)-**reducible**.

3. Composition Lemma

The main ingredient of the Gröbner-Shirshov theory for Lie algebras and their universal enveloping algebras is the **Composition Lemma** proved by Shirshov [12]. It asserts that if \(S \) is a Gröbner-Shirshov basis for the algebra \(A = A_X / J \) defined by \(S \) and \(p \) is trivial in \(A \), then the word \(\bar{p} \) is \(S\)-reducible. In this section, we prove the following generalization of Shirshov's Composition Lemma to the representations of associative algebras.

Theorem 3.1. Let \((S,T)\) be a pair of subsets of monic elements in \(A_X \), let \(A = A_X / J \) be the associative algebra defined by \(S \), and let \(M = A/I \) be the left \(A \)-module defined by \((S, T)\). Suppose that \((S,T)\) is a Gröbner-Shirshov pair for the \(A \)-module \(M \) and that \(p \in A_X \) is trivial in \(M \). Then the word \(\bar{p} \) is \((S,T)\)-reducible.

Proof. Since \(p \) is trivial in \(M \), we can write

\[
p = \sum \alpha_t a_t s_t b_t + \sum \beta_t c_t t_t,
\]

where \(\alpha_t, \beta_t \) are coefficients.
where $\alpha_i, \beta_j \in \mathbb{C}$, $a_i, b_i, c_j \in X^*$, $s_i \in S$, and $t_j \in T$. Choose the maximal word w in the length-lexicographic ordering \ll among the words $(a_i \overline{s}_1 b_i, c_j \overline{t}_j)$ in the expression of p. If $\overline{p} = w$, then we are done. Suppose this is not the case. Then $\overline{p} \ll w$ and without loss of generality, we may assume that one of the following three cases holds:

I. $w = a_1 \overline{s}_1 b_1 = a_2 \overline{s}_2 b_2$,
II. $w = c_1 \overline{t}_1 = c_2 \overline{t}_2$,
III. $w = a_1 \overline{s}_1 b_1 = c_1 \overline{t}_1$.

Case I. $w = a_1 \overline{s}_1 b_1 = a_2 \overline{s}_2 b_2$: we will show that $a_2 s_2 b_2 \equiv a_1 s_1 b_1 \mod (S; w)$. There are three possibilities:

(i) If the subwords \overline{s}_1 and \overline{s}_2 have empty intersection in $a_1 \overline{s}_1 b_1$, then we may assume that $a_1 s_1 b_1 = a_1 s_1 b_2$ and $a_2 s_2 b_2 = a \overline{s}_1 b_2$, where $a, b, c \in X^*$. Thus

$$a_2 s_2 b_2 - a_1 s_1 b_1 = -a(s_1 - \overline{s}_1)b_2 c + a s_1 b(s_2 - \overline{s}_2)c,$$

which implies $a_2 s_2 b_2 \equiv a_1 s_1 b_1 \mod (S; w)$.

(ii) If $\overline{s}_1 = u_1 u_2$, $\overline{s}_2 = u_2 u_3$ for some $u_2 \neq 1$, then $a_2 = a_1 u_1, b_1 = u_3 b_2$, and

$$a_2 s_2 b_2 - a_1 s_1 b_1 = a_1 u_1 s_2 b_2 - a_1 u_3 b_1$$

$$= -a(s_1 u_3 - u_1 s_2 b_2) = a_1(s_1, s_2) u_1 u_2 u_3 b_2.$$

Since $(s_1, s_2) u_1 u_2 u_3 \ll u_1 u_2 u_3$ and S is closed under the composition, we obtain $a_2 s_2 b_2 \equiv a_1 s_1 b_1 \mod (S; w)$.

(iii) If $\overline{s}_1 = u_1 \overline{s}_2 u_2$, then $a_2 = a_1 u_1, b_1 = u_2 b_1$, and

$$a_2 s_2 b_2 - a_1 s_1 b_1 = a_1 u_1 s_2 u_2 b_1 - a_1 s_1 b_1$$

$$= a_1(u_1 u_2 - s_1)b_2 = a_1(s_2, s_1) u_1 u_2 b_2.$$

Since $(s_1, s_2) u_2 \ll \overline{s}_2$ and S is closed under the composition, we get $a_2 s_2 b_2 \equiv a_1 s_1 b_1 \mod (S; w)$.

Case II. $w = c_1 \overline{t}_1 = c_2 \overline{t}_2$: we will show that $c_2 t_2 \equiv c_1 t_1 \mod (\emptyset, T; w)$. We may assume that $\overline{t}_2 = u t_1, u \in X^*$. Thus

$$c_2 t_2 - c_1 t_1 = c_2(t_2 - u t_1) = c_2(t_2 t_1) \overline{t}_2.$$

Since $(t_2, t_1) \overline{t}_2 \ll \overline{t}_2$ and T is closed under the right-justified composition with respect to S, $c_2 t_2 \equiv c_1 t_1 \mod (S, T; w)$.

Case III. $w = a_1 \overline{s}_1 b_1 = c_1 \overline{t}_1$: we will show that

$$a_1 s_1 b_1 \equiv c_1 t_1 \mod (S, T; w).$$

There are three possibilities:

(i) If the subword \overline{s}_1 and \overline{t}_1 have empty intersection in w, then as we have seen in **Case I** (i), we have $a_1 s_1 b_1 \equiv c_1 t_1 \mod (S, T; w)$.

(ii) If $\overline{sb} = s\overline{b}$, $\overline{t} = \overline{b}$ for some $b \neq 1$, then
\[a_1 s_1 b_1 - c_1 t_1 = a_1 (s_1 b_1 - s t_1) = a_1 (s_1, t_1), \]
and we get $a_1 s_1 b_1 \equiv c_1 t_1 \mod (S, T; w)$.

(iii) If $\overline{t} = \overline{s s_1 b_1}$, then
\[a_1 s_1 b_1 - c_1 t_1 = c_1 (s s_1 b_1 - t_1) = c_1 (s_1, t_1), \]
which implies $a_1 s_1 b_1 \equiv c_1 t_1 \mod (S, T; w)$.

Therefore, p can be written as $p = \sum a_i' s_i' b_i' + \sum c_j' t_j'$, where $a_i' s_i' b_i' \ll w$ for all i and $c_j' t_j' \ll w$ for all j. Choose the maximal word w_1 in the ordering \ll among $\{a_i' s_i' b_i', c_j' t_j'\}$. If $p = w_1$, then we are done. If this is not the case, repeat the above process. Since X is indexed by the set of positive integers, this process must terminate in finite steps, which completes the proof.

Theorem 3.2. Let (S, T) be a pair of subsets of monic elements in A_X, let $A = A_X/J$ be the associative algebra defined by S, and let $M = A/I$ be the left A-module defined by (S, T). Suppose that (S, T) is a Gröbner-Shirshov pair for the A-module M. Then the set of (S, T)-reduced words forms a linear basis of M.

Proof. Suppose $\sum \alpha_i u_i = 0$ in M, where $\alpha_i \in \mathbb{C}$ and u_i are distinct (S, T)-reduced words. Then, by Theorem 3.1, $\sum \alpha_i u_i$ is (S, T)-reducible. Since each u_i is (S, T)-reduced, we must have $\alpha_i = 0$ for all i. Thus the set of (S, T)-reduced words is linearly independent.

Now we will show that any word $u \in A_X$ can be written as
\[u = \sum \alpha_i u_i + \sum \beta_j a_j s_j b_j + \sum \gamma_k c_k t_k, \]
where u_i is an (S, T)-reduced word, $\alpha_i, \beta_j, \gamma_k \in \mathbb{C}$, $a_j, b_j, c_k \in X^*$, $s_j, t_k \in S$, $t_k \in T$, $a_j s_j b_j \ll u$ and $c_k t_k \ll u$ for all i, j, k. If u is (S, T)-reduced, then there is nothing to prove. If $u = a s b$ with $s \in S$, then $u - a s b = \sum \gamma_k v_i$, $v_i \ll u$. If $u = c t$ with $t \in T$, then $u - c t = \sum \gamma_k w_i$, $w_i \ll u$. We now apply the induction to complete the proof.

Corollary 3.3. Let (S, T) be a pair of subsets of monic elements in A_X, let $A = A_X/J$ be the associative algebra defined by S, and let $M = A/I$ be the left A-module defined by (S, T). If M is finite dimensional and the number of (S, T)-reduced words is equal to the dimension of M, then (S, T) is a Gröbner-Shirshov pair for the A-module M.
Proof. In the proof of the above theorem, we showed that the \(A \)-module \(M \) is linearly spanned by the set of \((S,T)\)-reduced words. Since the number of \((S,T)\)-reduced words is equal to the dimension of \(M \), it forms a linear basis of \(M \). Suppose \((S,T)\) is not a Gröbner-Shirshov pair of \(M \). Then there is a nontrivial composition among the elements in \(S \) and \(T \), which can be written as a linear combination of \((S,T)\)-reduced words. Since any composition should vanish in \(M \), we get a nontrivial linear dependence relation among \((S,T)\)-reduced words in \(M \), which is a contradiction. \(\square\)

Remark. The above statement can be generalized to the graded \(A \)-modules with finite dimensional homogeneous subspaces by a straightforward modification of our argument.

Let \((S,T)\) be a pair of subsets of monic elements in \(A_X \), let \(A = A_X/J \) be the associative algebra defined by \(S \), and let \(M = A/I \) be the left \(A \)-module defined by \((S,T)\). We will show that how one can complete the pair \((S,T)\) to get a Gröbner-Shirshov pair for the \(A \)-module \(M \).

For any subset \(R \) of \(A_X \), we define
\[
\hat{R} = \{ p/\alpha \mid \alpha \in \mathbb{C} \text{ is the leading coefficient of } p \in R \}.
\]
Let \(S^{(0)} = \hat{S} \). For \(i \geq 0 \), set
\[
S^{(i)} = \{ (f,g)_{w\neq 0} \bmod (S^{(i)}; w) \mid f,g \in S^{(i)} \}.
\]
\[
S^{(i+1)} = S^{(i)} \cup \hat{S}^{(i)}.
\]
Then, clearly, the set \(S = \bigcup_{i \geq 0} S^{(i)} \) is closed under the composition. Note that the algebra \(A \) is defined also by \(S \).

Let \(T^{(0)} = \hat{T} \). For \(i \geq 0 \), set
\[
T^{(i)} = \{ (f,g)_{w\neq 0} \bmod (S,T^{(i)}; w) \mid f,g \in T^{(i)} \},
\]
\[
T^{(i+1)} = T^{(i)} \cup \hat{T}^{(i)}.
\]
Then the set \(T = \bigcup_{i \geq 0} T^{(i)} \) is closed under the right-justified composition with respect to \(S \).
We now consider the compositions between \mathcal{S} and T^c. Let $X^{(0)} = T^c$. For $i \geq 0$, set
\[
X^{(i)} = \{(f, g) \mid f \in \mathcal{S}, g \in X^{(i)}\},
\]
\[
X^{(i+1)} = (X^{(i)} \cup \bar{X}^{(i)})^c.
\]
Let $\mathcal{T} = \bigcup_{i \geq 0} X^{(i)}$. Then the A-module M is defined also by the pair $(\mathcal{S}, \mathcal{T})$ and $(\mathcal{S}, \mathcal{T})$ is a Gröbner-Shirshov pair of M.

We summarize the above discussion in the following theorem.

Theorem 3.4. Let $(\mathcal{S}, \mathcal{T})$ be a pair of subsets of monic elements in A_X, let $A = A_X / J$ be the associative algebra defined by \mathcal{S}, and let $M = A / I$ be the left A-module defined by $(\mathcal{S}, \mathcal{T})$. Then the pair $(\mathcal{S}, \mathcal{T})$ can be completed to a Gröbner-Shirshov pair $(\mathcal{S}, \mathcal{T})$ for the A-module M.

4. Kac-Moody algebras

In this section, we show how to apply our Gröbner-Shirshov basis theory for representations to solve the reduction problem for integrable highest weight modules over symmetrizable Kac-Moody algebras.

Let $\Omega = \{1, 2, \ldots, n\}$ be a finite index set and let $A = A_{\mathcal{Y}} / J$ be a symmetrizable generalized Cartan Matrix of rank l. Fix a realization $(\mathfrak{h}, \Pi, \Pi^\vee)$ of A in the sense of [8]. Extend the set Π^\vee to obtain a basis $H = \{h_1, \ldots, h_n, h_{n+1}, \ldots, h_{2n-l}\}$ for \mathfrak{h}. Let $E = \{e_i\}_{i \in \Omega}, F = \{f_i\}_{i \in \Omega},$ and $X = E \cup H \cup F$. We define a linear ordering on X by setting
\[
e_i > h_j \succ f_k \quad \text{for all } i, j, k \in \Omega,
\]
\[
e_i > e_j, \quad h_i > h_j, \quad f_i > f_j \quad \text{if } i > j.
\]
Then we have the lexicographic ordering and the length-lexicographic ordering on X^* as in Section 2. We denote the left adjoint action of a Lie algebra by ad and the right adjoint action by \overline{ad}.
The Kac-Moody algebra $\mathfrak{g} = \mathfrak{g}(A)$ associated with A is defined to be the Lie algebra with generators X and the following defining relations:

$$\begin{align*}
W : & \quad [h_i, h_j] \quad (i > j), \\
& \quad [e_i f_j] - \delta_{ij} h_i, \quad [e_i h_j] + \alpha_i(h_j)e_i, \quad [h_i f_j] + \alpha_j(h_i)f_j, \\
S_+ : & \quad (\text{ad}e_i)^{\lambda_i} e_j \quad (i > j), \\
& \quad e_i(\text{ad}e_j)^{\lambda_i} \quad (i > j), \\
S_- : & \quad (\text{ad}f_i)^{\lambda_i} f_j \quad (i > j), \\
& \quad f_i(\text{ad}f_j)^{\lambda_i} \quad (i > j).
\end{align*}$$

Let $\mathcal{S} = S_+ \cup W \cup S_-$. We denote by \mathfrak{g}_+ (resp. \mathfrak{h} and \mathfrak{g}_-) the subalgebra of \mathfrak{g} generated by E (resp. H and F). If we consider the set of relations S as a subset of A_X with $[x, y] = xy - yx$, we can easily see that the universal enveloping algebra $U = U(\mathfrak{g})$ of \mathfrak{g} is the algebra defined by S in A_X. We denote by U_+ (resp. U_0 and U_-) the \mathbb{C}-subalgebra of U with 1 generated by e_i's (resp. h_i's and f_i's).

Let

$$P = \{\lambda \in \mathfrak{h}^* | \lambda(h_i) \in \mathbb{Z}, i \in \Omega\},$$

$$P_+ = \{\lambda \in P | \lambda(h_i) \geq 0, i \in \Omega\}.$$

The set P is called the weight lattice and an element $\lambda \in P_+$ is called a dominant integral weight. Let

$$T_{Ver} = \{e_i, h_i - \lambda(h_i) | i \in \Omega\},$$

and for $\lambda \in P_+$, set

$$T_\lambda = \{f_i^{\lambda(h_i)+1} | i \in \Omega\} \quad \text{and} \quad T = T_{Ver} \cup T_\lambda.$$

Let $V(\lambda)$ be the irreducible highest weight \mathfrak{g}-module with highest weight $\lambda \in P_+$. Then any highest weight \mathfrak{g}-module with highest weight $\lambda \in P_+$ and highest weight vector v_λ is isomorphic to $V(\lambda)$ if and only if $f_i^{\lambda(h_i)+1}v_\lambda = 0$ for all $i \in \Omega$ ([8]). Using the language of Gröbner-Shirshov basis theory, this fact can be rephrased as follows:

Proposition 4.1. The irreducible highest weight \mathfrak{g}-module $V(\lambda)$ with highest weight $\lambda \in P_+$ is isomorphic to the $U(\mathfrak{g})$-module defined by the pair (S, T). Moreover, due to the triangular decomposition of $U(\mathfrak{g})$, $V(\lambda)$ can be regarded as the U_--module defined by the pair (S_-, T_λ) in A_F.
As we have seen in Theorem 3.4, the pair \((S_-, T_3)\) can be completed to a Gröbner-Shirshov pair \((S, T)\) of the integrable highest weight \(U(g)\)-module \(V(\lambda)\). Consider first the set \(S_-\) of Serre relations. To obtain a Gröbner-Shirshov basis \(S\) for the algebra \(U_-\), one can take a direct approach of computing all the possible non-trivial compositions in \(S_-\) as was described in Theorem 3.4. An alternative approach is to compute the Lie compositions and use the main results of [3]: a Gröbner-Shirshov basis for the Lie algebra \(g\) is also a Gröbner-Shirshov basis for its universal enveloping algebra \(U(g)\).

For the finite dimensional simple Lie algebras, the Gröbner-Shirshov bases were completely determined in [4, 5, 6]. For the affine Kac-Moody algebras, the Gröbner-Shirshov bases were constructed only for the simplest case — for the affine Kac-Moody algebra of type \(A_n^{(1)}\) [11].

Now assume that we have a Gröbner-Shirshov basis \(S\) for \(U(g)\). Note that the set \(T_3\) is already closed under the right-justified composition with respect to \(S\). Therefore, to construct a Gröbner-Shirshov pair \((S, T)\) for the integrable highest weight \(U(g)\)-module \(V(\lambda)\), we have only to carry out the last step of the algorithm given in Theorem 3.4, and this process works for any symmetrizable Kac-Moody algebras. However, when the character of \(V(\lambda)\) is known, it would be more practical to compute sufficiently many relations in \(V(\lambda)\) and make use of Corollary 3.3. This is the approach we take in the next section to construct Gröbner-Shirshov pairs for the simple Lie algebra \(sl_3\).

5. Irreducible modules of \(sl_3\)

In this section, we will give an explicit construction of Gröbner-Shirshov pairs and monomial bases for finite dimensional irreducible representations of the simple Lie algebra \(sl_3\). We will also show that each of these bases is in 1-1 correspondence with the set of semistandard Young tableaux of a given shape.

Recall that the simple Lie algebra \(sl_3\) is a Kac-Moody algebra associated with the Cartan matrix \(\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\). Hence the algebra \(U_-\) is the associative algebra defined by the set \(S_- = \{[f_2[f_2f_1]], [f_2f_1f_1]\}\) of the Serre relations in \(A_F\), where \(F = \{f_1, f_2\}\). It can be easily verified that \(S_-\) is already closed under the composition (see, for example, [4]). Thus
the algebra U_- has a monomial basis consisting of S_--reduced words $f_1^a (f_2 f_1)^b f_2^c$ in F^* ($a, b, c \geq 0$).

Lemma 5.1. The relations

$$f_2 f_1^k - k f_1^{k-1} [f_2 f_1] - f_1^k f_2 \quad (k \geq 2)$$

hold in U_-. In other words, they belong to the two-sided ideal generated by S_- in \mathcal{A}_F.

Proof. If $k = 2$, then it is just $[[f_2 f_1] f_1] = 0$, which is given by S_-. Assume that the relation holds for some fixed k. Since $[f_2 f_1] f_1 = f_1 [f_2 f_1]$, we obtain

$$f_2 f_1^{k+1} = k f_1^{k-1} [f_2 f_1] f_1 + f_1^k f_2 f_1$$

$$= (k + 1) f_1^k [f_2 f_1] + f_1^{k+1} f_2$$

as desired. \square

Let $\lambda = m \Lambda_1 + n \Lambda_2$ be a dominant integral weight for sl_3, where Λ_i are the fundamental weights ($i = 1, 2$), and let $V(\lambda)$ be the irreducible highest weight module over sl_3 with highest weight λ. Then, as a U_--module, $V(\lambda)$ is defined by the pair (S_-, T_{λ}), where $T_{\lambda} = \{ f_1^{m+1}, f_2^{n+1} \}$. From now on, we will say that a relation $R = 0$ holds in $V(\lambda)$ whenever R is contained in the left ideal of U_- generated by T_{λ}.

Lemma 5.2. The following relations hold in $V(\lambda)$:

(a) $f_1^{m+c+1} f_2^c = 0$ ($c \geq 0$),

(b) $f_1^{m+c} [f_2 f_1] f_2^c + \frac{1}{m + c + 1} f_1^{m+c+1} f_2^{c+1} = 0$ ($c \geq 0$).

Proof. If $c = 0$, then it is just f_2^{m+1} belonging to T_{λ}. Assume that we have the first relation for some fixed c. Multiplying f_2 from the left, Lemma 5.1 yields

$$f_2 f_1^{m+c+1} f_2^c = (m + c + 1) f_1^{m+c} [f_2 f_1] f_2^c + f_1^{m+c+1} f_2^{c+1},$$

which gives the second relation for c. Now, multiplying $[f_2 f_1]$ to the left of the first relation and using the second relation obtained in the above, we get

$$[f_2 f_1] f_1^{m+c+1} f_2^c = f_1^{m+c+1} [f_2 f_1] f_2^c = -\frac{1}{m + c + 1} f_1^{m+c+2} f_2^{c+1}.$$

Thus we get the first relation for $c + 1$. By multiplying f_2 from the left again, Lemma 5.1 yields the second relation for $c + 1$. Hence by induction, we obtain the desired relations. \square
Lemma 5.3. The relations

\[\sum_{r=0}^{b} \frac{(m - b + c + 1)!}{(m - b + c + r + 1)!} \binom{b}{r} f_1^{m-b+c+r+1} f_2^{b-r} f_2^{c+r} = 0 \]

hold in \(V(\lambda) \) for \(c \geq 0 \) and \(0 \leq b \leq m + c + 1 \).

Proof. Fix an arbitrary \(c \geq 0 \). If \(b = 0 \), then the above relation is just \(f_1^{m+c+1} f_2^0 = 0 \), which is the first relation in Lemma 5.2. Assume that the relation holds for some fixed \(b \). Multiplying by \(f_2 \) from the left and using \(f_2[f_2 f_1] = [f_2 f_1] f_2 \), we get

\[
\sum_{r=0}^{b} \frac{(m - b + c + 1)!}{(m - b + c + r + 1)!} \binom{b}{r} f_2 f_1^{m-b+c+1+r} [f_2 f_1]^{b-r} f_2^{c+r} =
\]

\[
= \sum_{r=0}^{b} \frac{(m + c - b + 1)!}{(m - b + c + r)!} \binom{b}{r} f_1^{m+c-b+r} [f_2 f_1]^{b-r+1} f_2^{c+r}
\]

\[
+ \sum_{r=0}^{b} \frac{(m - b + c + 1)!}{(m - b + c + r + 1)!} \binom{b}{r} f_1^{m-b+c+r+1} [f_2 f_1]^{b-r} f_2^{c+r+1}
\]

\[
= (m - b + c + 1) f_1^{m-b+c} [f_2 f_1]^{b+1} f_2^2 + \frac{(m - b + c + 1)!}{(m + c + 1)!} f_1^{m+c+1} f_2^{b+c+1}
\]

\[
+ \sum_{r=1}^{b} \frac{(m - b + c + 1)!}{(m - b + c + r + 1)!} \binom{b+1}{r} f_1^{m-b+c+r} [f_2 f_1]^{b-r+1} f_2^{c+r}.
\]

Dividing out by the leading coefficient, we get

\[
\sum_{r=0}^{b+1} \frac{(m - b + c)!}{(m - b + c + r)!} \binom{b+1}{r} f_1^{m-b+c+r} [f_2 f_1]^{b-r+1} f_2^{c+r} = 0,
\]

which is the desired relation for \(b + 1 \).

Lemma 5.4. The relations

\[[f_2 f_1]^{m+1} f_2^c + \sum_{r=1}^{m+1} \frac{c!}{(c+r)!} \binom{m+1}{r} f_1^r [f_2 f_1]^{m-r+1} f_2^{c+r} = 0 \]

hold in \(V(\lambda) \) for \(c \geq 0 \).

Proof. If \(c = 0 \), it is the same as the case of \(b = m + 1, c = 0 \) in Lemma 5.3. Assume that the relation holds for some fixed \(c \). Multiplying by \(f_2 \),
we have

\[
[f_2 f_1]^{m+1} f_2^{c+1} + \sum_{r=1}^{m+1} \frac{c!}{(c+r)!} \binom{m+1}{r} f_2 f_1^{r-1} [f_2 f_1]^{m-r+1} f_2^{c+r} \\
= [f_2 f_1]^{m+1} f_2^{c+1} + \sum_{r=1}^{m+1} \frac{c!}{(c+r)!} \binom{m+1}{r} f_1^{r-1} [f_2 f_1]^{m-r+1} f_2^{c+r} \\
+ \sum_{r=1}^{m+1} \frac{c!}{(c+r)!} \binom{m+1}{r} f_1^{r} [f_2 f_1]^{m-r+1} f_2^{c+r+1} \\
= \frac{c + m + 2}{c + 1} [f_2 f_1]^{m+1} f_2^{c+1} + \frac{c!}{(c+m+1)!} f_1^{m+1} f_2^{c+m+2} \\
+ \sum_{r=1}^{m} A \binom{c}{c+r+1} f_1^{r} [f_2 f_1]^{m-r+1} f_2^{c+r+1},
\]

where \(A = \binom{m+1}{r+1} (r+1) + \binom{m+1}{r} (c+r+1) \). Dividing out by the leading coefficient, we get the desired relation for \(c+1 \).

Theorem 5.5. The pair \((S, T_\lambda)\) is a Gröbner-Shirshov pair for the irreducible highest weight module \(V(\lambda) \) over the simple Lie algebra \(sl_3 \), where \(S = S_- \) and \(T_\lambda \) consists of the following elements:

(a) \(f_2^{m+1} \),

(b) \([f_2 f_1]^{m+1} f_2 + \sum_{r=1}^{m+1} \frac{c!}{(c+r)!} \binom{m+1}{r} f_1^{r} [f_2 f_1]^{m-r+1} f_2^{c+r} (1 \leq c \leq n) \),

(c) \(\sum_{r=0}^{b} \frac{(m-b+c+1)!}{(m-b+c+r+1)!} \binom{b}{r} f_1^{m-b+r+1} [f_2 f_1]^{b-r} f_2^{c+r} (0 \leq b \leq m, 0 \leq c \leq n) \).

Hence the set of the monomials of the form

\[
f_1^c (f_2 f_1)^b f_2^n (0 \leq c \leq n, 0 \leq b \leq m, 0 \leq a \leq m - b + c)
\]

forms a linear basis of \(V(\lambda) \).

Proof. By Lemma 5.1 - Lemma 5.4, we see that the above relations hold in \(V(\lambda) \). Note that the set of \((S, T_\lambda)\)-reduced words is given by:

\[
f_1^c (f_2 f_1)^b f_2^n (0 \leq c \leq n, 0 \leq b \leq m, 0 \leq a \leq m - b + c).
\]
Hence the number of \((\mathcal{S}, T_{\lambda})\)-reduced words is

\[
\sum_{c=0}^{n} \sum_{b=0}^{m} (m-b+c+1) = \frac{1}{2} (m+1)(n+1)(m+n+2).
\]

This is exactly the dimension of \(V(\lambda)\). Hence by Corollary 3.3, the pair \((\mathcal{S}, T_{\lambda})\) is a Gröbner-Shirshov pair for \(V(\lambda)\). \(\square\)

Let \(\lambda = m\Lambda_1 + n\Lambda_2\) be a dominant integral weight for \(sl_3\) and let \(Y^\lambda = \{(1,i),(2,j)|1 \leq i \leq m+n, 1 \leq j \leq n\}\) be the Young frame of shape \(\lambda\). We define a semistandard Young tableau of shape \(\lambda\) to be a function \(\tau\) of \(Y^\lambda\) into the set \(\{1,2,3\}\) such that

\[
\tau(k,i) \leq \tau(k,i+1) \quad \text{for } k = 1,2,
\]

\[
\tau(1,j) < \tau(2,j) \quad \text{for all } j = 1, \ldots, n.
\]

As usual, we can present a semistandard Young tableau by an array of colored boxes. For example, the following are semistandard tableaux of shape \(2\Lambda_1, 3\Lambda_2\) and \(2\Lambda_1 + \Lambda_2\), respectively.

\[
\begin{array}{|c|c|}
\hline
1 & 2 \\
\hline
\end{array} \quad \begin{array}{|c|c|c|}
\hline
1 & 2 & 2 \\
\hline
2 & 3 & 3 \\
\hline
\end{array} \quad \begin{array}{|c|c|}
\hline
1 & 1 \\
\hline
1 & 1 \\
\hline
3 \\
\hline
\end{array}
\]

We would like to identify the monomial basis consisting of \((\mathcal{S}, T_{\lambda})\)-reduced words with the set of semistandard Young tableaux of shape \(\lambda\). Consider the empty word as the semistandard Young tableau \(\tau^\lambda\) of shape \(\lambda\) defined by \(\tau^\lambda(1,i) = 1\) and \(\tau^\lambda(2,j) = 2\) for all \(i, j\). To each \((\mathcal{S}, T_{\lambda})\)-reduced word \(f_1^c(f_2f_1)^bf_2^c\) with \(0 \leq c \leq n, 0 \leq b \leq m, 0 \leq a \leq m-b+c\), we associate the semistandard Young tableau \(\tau\) as follows. Start with the tableau \(\tau^\lambda\) and change its entries by the following rule:

(i) Let the word \(f_2\) change the box \(2\) to the box \(3\), let the word \(f_2f_1\) change \(1\) to \(3\), and let \(f_1\) change \(1\) to \(2\).

(ii) Let the words \(f_2, f_2f_1\) and \(f_1\) in \(f_1^c(f_2f_1)^bf_2^c\) act successively on \(\tau^\lambda\) changing the boxes in \(\tau^\lambda\) from the right.

For example, the word \(f_1^2(f_2f_1)^3f_2\) occurring in \(V(3\Lambda_1 + 3\Lambda_2)\) corresponds to the semistandard Young tableau

\[
\begin{array}{|c|c|c|c|}
\hline
1 & 1 & 2 & 3 \\
\hline
2 & 2 & 3 \\
\hline
\end{array}
\]

More explicitly, to each \((\mathcal{S}, T_{\lambda})\)-reduced word \(f_1^c(f_2f_1)^bf_2^c\) with \(0 \leq c \leq n, 0 \leq b \leq m, 0 \leq a \leq m-b+c\), we associate the semistandard
Young tableau τ defined by:

\[
\tau(1, i) = \begin{cases}
1 & \text{if } 1 \leq i \leq m + n - 1 - b, \\
2 & \text{if } m + n - a - b + 1 \leq i \leq m + n - b, \\
3 & \text{if } m + n - b + 1 \leq i \leq m + n,
\end{cases}
\]

\[
\tau(2, j) = \begin{cases}
2 & \text{if } 1 \leq j \leq n - c, \\
3 & \text{if } n - c + 1 \leq j \leq n.
\end{cases}
\]

Then it is now easy to verify that the above correspondence defines a bijection between the set of (S, T_λ)-reduced words and the set of semistandard Young tableaux of shape λ.

Proposition 5.6. The monomial basis of $V(\lambda)$ given by (S, T_λ)-reduced words is in 1-1 correspondence with the set of semistandard Young tableaux of shape λ.

Furthermore, we can define a colored oriented graph structure on the monomial basis of $V(\lambda)$ consisting of (S, T_λ)-reduced words (and hence on the set of semistandard Young tableaux of shape λ): for each $i = 1, 2$, we define $w \xrightarrow{i} w'$ if and only if $w' = f_i w$. This graph is usually different from the crystal graph developed by Kashiwara ([9], [10]).

Our discussion will be illustrated in the following example.

Example 5.7. Let $\lambda = 2\Lambda_1 + \Lambda_2$. In the following, we list all the (S, T_λ)-reduced words and the corresponding semistandard Young tableaux of shape λ.

<table>
<thead>
<tr>
<th></th>
<th>f_1</th>
<th>f_2</th>
<th>f_1^2</th>
<th>$f_1 f_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>$f_2 f_1$</td>
<td>$f_2^2 f_1$</td>
<td>$f_1 f_2 f_1 f_2$</td>
<td>$f_2 f_1 f_2 f_1$</td>
<td>$f_1 (f_2 f_1)^2 f_2$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$f_1 f_2 f_1 f_2$</td>
<td>$(f_2 f_1)^2 f_2$</td>
<td>$f_2^2 f_2 f_1 f_2$</td>
<td>$(f_2 f_1)^2 f_2$</td>
<td>$f_1 (f_2 f_1)^2 f_2$</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The colored oriented graph for $V(\lambda)$ is given in the following figure.

References

Department of Mathematics
Seoul National University
Seoul 151-742, Korea
E-mail: sjkang@math.snu.ac.kr
khlee@math.snu.ac.kr