COINCIDENCE AND SADDLE POINT THEOREMS
ON GENERALIZED CONVEX SPACES

SEHIE PARK AND IN-SOOK KIM

Abstract. We give a new coincidence theorem for multimaps on
generalized convex spaces and apply it to deduce \(\varepsilon \)-saddle point and
saddle point theorems.

1. Introduction and Preliminaries

In [8], some \(\varepsilon \)-saddle point and saddle point theorems for convex sets
in topological vector spaces were obtained. These new results generalize
the corresponding ones of Komiya [2].

Now it is well-known that convex subsets of topological vector spaces
are generalized to convex spaces due to Lassonde [3], which are further
extended to the generalized convex spaces or \(G \)-convex spaces due to
Park [4,5,6,7]. This new class of spaces contains many known spaces
having certain abstract convexity without linear structure; see [5].

In the present paper, we deduce a new coincidence theorem for mul-
timaps on \(G \)-convex spaces, and use it to deduce new \(\varepsilon \)-saddle point
and saddle point theorems. Consequently, we show that main results
in [8] holds for much larger class of spaces.

A multimap \(T : X \rightrightarrows Y \) is a function from \(X \) into the power set
\(2^Y \) of \(Y \) with fibers \(T^{-1}y = \{ x \in X : y \in Tx \} \) for \(y \in Y \). A function
\(f : X \rightarrow \mathbb{R} \) on a topological space \(X \) is said to be lower (resp. upper)
semicontinuous if the set \(\{ x \in X : f(x) > \alpha \} \) (resp. \(\{ x \in X : f(x) < \alpha \} \)) is open in \(X \) for every real number \(\alpha \).

Received June 30, 1999.
1991 Mathematics Subject Classification: 54H25, 49J35, 54C60.
Key words and phrases: \(G \)-convex space, \(\varepsilon \)-saddle point, saddle point, coinci-
dence theorem, transfer upper (lower) semicontinuous function, multimap.
The first author is supported by S.N.U. Research Fund, 1999.
Seohie Park and In-Sook Kim

Given a set A, let $\langle A \rangle$ denote the collection of all nonempty finite subsets of A and $|A|$ the cardinality of A. Let Δ_n be the standard n-simplex.

A generalized convex space or a G-convex space $(X, D; \Gamma)$ consists of a topological space X and a nonempty set D such that for each $A \in \langle D \rangle$ with $|A| = n + 1$, there exist a subset $\Gamma(A)$ of X and a continuous function $\phi_A : \Delta_n \to \Gamma(A)$ such that $\phi_A(\Delta_J) \subset \Gamma(J)$ for every $J \in \langle A \rangle$, where Δ_J denotes the face of Δ_n corresponding to $J \in \langle A \rangle$; that is, if $\Delta_n = \text{co}\{e_0, e_1, \ldots, e_n\}, A = \{a_0, a_1, \ldots, a_n\}$, and $J = \{a_{i_0}, a_{i_1}, \ldots, a_{i_k}\} \subset A$, then $\Delta_J = \text{co}\{e_{i_0}, e_{i_1}, \ldots, e_{i_k}\}$.

Examples of G-convex spaces [6] are convex spaces [3], C-spaces [1], and many others; see [5]. Given a G-convex space $(X, D; \Gamma)$ with $D \subset X$, a subset K of X is said to be Γ-convex if for each $A \in \langle D \rangle$, $A \subset K$ implies $\Gamma(A) \subset K$. For a nonempty subset K of X we define the Γ-convex hull of K

$$\Gamma\text{-co } K := \bigcap\{B \subset X : B \text{ is } \Gamma\text{-convex and } K \subset B\}.$$

Then the Γ-convex hull of K is the smallest Γ-convex set containing K.

If $D = X$, then $(X, D; \Gamma)$ will be denoted by (X, Γ). Let $\text{Int}_K A$ denote the interior of A in K.

Given $\varepsilon > 0$, a function $f : X \times Y \to \mathbb{R}$ has an ε-saddle point $(x^*_\varepsilon, y^*_\varepsilon)$ if

$$f(x, y^*_\varepsilon) - \varepsilon < f(x^*_\varepsilon, y^*_\varepsilon) < f(x^*_\varepsilon, y) + \varepsilon$$

for all $x \in X$ and $y \in Y$; and a point (x^*, y^*) is a saddle point of f if

$$f(x, y^*) \leq f(x^*, y^*) \leq f(x^*, y)$$

for all $x \in X$ and $y \in Y$; see [8].

Let X and Y be topological spaces, K a subset of X and L a subset of Y. A function $f : X \times Y \to \mathbb{R}$ is said to be α-transfer lower (resp. upper) semicontinuous on K relative to L if for each $(x, y) \in K \times L$, $f(x, y) > \alpha$ (resp. $f(x, y) < \alpha$) implies that there exists an open neighborhood $N(x)$ of x in K and a point $y' \in L$ such that $f(z, y') > \alpha$ (resp. $f(z, y') < \alpha$) for all $z \in N(x)$; and transfer lower (resp. upper) semicontinuous on K relative to L if f is α-transfer lower (resp. upper) semicontinuous on K relative to L.
Coincidence and saddle point theorems on generalized convex spaces

upper) semicontinuous on K relative to L for each $\alpha \in \mathbb{R}$; see Tian [9]. These concepts are proper generalizations of lower (resp. upper) semicontinuous real-valued functions.

2. The Coincidence Theorem

We begin with the following lemmas due to the first author [4].

Lemma 1. Let X be a Hausdorff compact space and $(Y,D;\Gamma)$ a G-convex space. Let $T : X \to Y$ and $S : X \to D$ be multimaps such that the following conditions are satisfied:

1. For each $x \in X$, $A \in \langle Sx \rangle$ implies $\Gamma(A) \subset Tx$; and
2. $X = \bigcup \{ \text{Int}_X S^{-1}y : y \in D \}$.

Then T has a continuous selection $f : X \to Y$ such that $f = g \circ h$, where $g : \Delta_n \to Y$ and $h : X \to \Delta_n$ are continuous functions.

Lemma 2. Let (X,Γ) be a Hausdorff compact G-convex space and $T : X \to X$ a multimap such that Tx is a Γ-convex set for each $x \in X$, and $X = \bigcup \{ \text{Int}_X T^{-1}y : y \in X \}$. Then T has a fixed point.

The following theorem improves and extends a result in [10, Theorem 1] to the case of a G-convex space.

Theorem 1. Let X be a Hausdorff topological space, $(Y,D;\Gamma_Y)$ a G-convex space, M and P subsets of $X \times Y$. Suppose that there exist a compact G-convex space (K,Γ_K) with $K \subseteq X$ and a subset N of $K \times D$ such that

1. For each $x \in K$, Γ-co \{ $y \in D : (x,y) \notin N$ \} \subset \{ $y \in Y : (x,y) \notin M$ \};
2. For each $x \in K$ with \{ $y \in D : (x,y) \notin N$ \} \neq \emptyset, there exists $y' \in D$ such that $x \in \text{Int}_K \{ x' \in K : (x',y') \notin N \}$;
3. For each $y \in Y$, \{ $x \in K : (x,y) \in P$ \} is a Γ-convex subset of (K,Γ_K);
4. $Y = \bigcup \{ \text{Int}_Y \{ y \in Y : (x,y) \in P \} : x \in K \}$; and
5. For all $(x,y) \in K \times Y$, $(x,y) \in P$ implies $(x,y) \in M$.

Then there exists a point $x_0 \in K$ such that $\{ x_0 \} \times D \subseteq N$.

13
Sehie Park and In-Sook Kim

\textit{Proof.} Suppose that the conclusion does not hold; that is, for each \(x \in K \) there is a point \(y_0 \in D \) such that \((x,y_0) \notin N\). For each \(x \in K \), let

\[Sx = \{ y \in D : (x,y) \notin N \}, \quad Tx = \{ y \in Y : (x,y) \notin M \}. \]

Then for each \(x \in K \), \(\Gamma\text{-co}Sx \subset Tx \) by (1); \(K = \bigcup \{ \text{Int}_K S^{-}y : y \in D \} \) by (2). Define a multimap \(\tilde{S} : K \rightarrow Y \) by \(\tilde{S}x := \Gamma\text{-co}Sx \) for \(x \in K \).

Since \(K = \bigcup \{ \text{Int}_K \tilde{S}^{-}y : y \in Y \} \), by Lemma 1, there is a continuous function \(f : K \rightarrow Y \) such that \(f(x) \in \tilde{S}x \subset Tx \) for all \(x \in K \). Hence, \((x,f(x)) \notin M \) for all \(x \in K \).

On the other hand, we define a multimap \(H : Y \rightarrow K \) by

\[Hy := \{ x \in K : (x,y) \in P \} \quad \text{for} \ y \in Y. \]

By (3), \(Hy \) is \(\Gamma \)-convex for every \(y \in Y \), and \(Y = \bigcup \{ \text{Int}_Y \text{H}^{-}x : x \in K \} \) by (4). A multimap \(F : K \rightarrow K \) defined by \(Fx := h \circ f(x) \) for \(x \in K \) has \(\Gamma \)-convex values and \(K = \bigcup \{ \text{Int}_K F^{-}y : y \in K \} \). In fact, for every \(x \in K \), there is a \(y \in K \) such that \(f(x) \in \text{Int}_Y \text{H}^{-}y \) and so \(x \in f^{-} \{ \text{Int}_Y \text{H}^{-}y \} \subset \text{Int}_K f^{-} \{ \text{H}^{-}y \} = \text{Int}_K F^{-}y \) by the continuity of \(f \). Since \((K, \Gamma_K)\) is a Hausdorff compact \(G \)-convex space, by Lemma 2, there is a point \(x_0 \in K \) such that \(x_0 \in Fx_0 = H(f(x_0)) \); and hence by (5), \((x_0,f(x_0)) \in M \). This contradiction proves the theorem. \(\square \)

Note that, if \(X \) and \(Y \) are \(C \)-spaces, Theorem 1 reduces to [10, Theorem 1].

Now we give a Fan-Browder type coincidence theorem for \(G \)-convex spaces which generalizes [1, Corollary 4.2] and [10, Theorem 5] for \(C \)-spaces.

\textbf{Theorem 2.} Let \(X \) be a Hausdorff topological space, \((Y,D; \Gamma_Y)\) a \(G \)-convex space, and \(T : X \rightarrow Y \) and \(S : Y \rightarrow X \) multimap. Suppose that there exist a compact \(G \)-convex space \((K, \Gamma_K)\) with \(K \subset X \) and a multimap \(A : K \rightarrow D \) such that

1. for each \(x \in K \), \(Ax \subset Tx \), and \(Tx \) is \(\Gamma \)-convex;
2. \(K = \bigcup \{ \text{Int}_K A^{-}y : y \in D \} \);
3. for each \(y \in Y \), \(Sy \cap K \) is \(\Gamma \)-convex in \((K, \Gamma_K)\); and
4. \(Y = \bigcup \{ \text{Int}_Y S^{-}x : x \in K \} \).
Coincidence and saddle point theorems on generalized convex spaces

Then there exist points \(x_0 \in K \) and \(y_0 \in Y \) such that \(y_0 \in Tx_0 \) and \(x_0 \in Sy_0 \).

Proof. Let

\[
P = \bigcup_{x \in X} \{x\} \times S^\perp x, \quad M = \{(x, y) \in X \times Y : y \not\in Tx\} \quad \text{and} \quad N = \{(x, y) \in K \times D : y \not\in Ax\}.
\]

Suppose that \(Tx \cap S^\perp x = \emptyset \) for all \(x \in K \). Then for all \((x, y) \in K \times Y \), \((x, y) \in P \) implies \((x, y) \in M \). Since \(\{y \in D : (x, y) \not\in N\} \subset \{y \in Y : y \in Tx\} = \{y \in Y : (x, y) \not\in M\} \), and \(Tx \) is \(\Gamma \)-convex for each \(x \in K \), condition (1) of Theorem 1 is satisfied. By (2) it is clear that condition (2) of Theorem 1 holds.

For each \(y \in Y \), since \(\{x \in K : (x, y) \in P\} = Sy \cap K \), by assumption (3), condition (3) of Theorem 1 is also satisfied. By (4),

\[
Y = \bigcup \{\text{Int}_Y \{y \in Y : (x, y) \in P\} : x \in K\},
\]

that is, condition (4) of Theorem 1 holds. By Theorem 1, there exists a point \(x_0 \in K \) such that \(\{x_0\} \times D \subset N \); that is, \(y \not\in Ax_0 \) for all \(y \in D \). Consequently, we have \(Ax_0 = \emptyset \), which contradicts assumption (2) (since \(y_0 \in Ax_0 \) for some \(y_0 \in D \)). This completes the proof.

Note that, even if \(X \) and \(Y \) are \(C \)-spaces, Theorem 2 improves [10, Theorem 5].

3. Main Results

Using our coincidence theorem, we obtain a new \(\varepsilon \)-saddle point theorem for \(G \)-convex spaces which generalizes [8, Theorem 1] for topological vector spaces.

Theorem 3. Let \(X \) be a Hausdorff topological space, \((Y, \Gamma_Y) \) a \(G \)-convex space, \(f : X \times Y \to \mathbb{R} \) a real-valued function and \(\varepsilon > 0 \). Suppose that there exists a compact \(G \)-convex space \((K, \Gamma_K) \) with \(K \subset X \) such that

1. for any \((x, y) \in X \times Y \), \(\inf_{v \in Y} f(x, v) > -\infty \) and \(\sup_{u \in X} f(u, y) < +\infty \);
(2) the function \((x, y) \mapsto f(x, y) - \inf_{v \in Y} f(x, v) \) is \(\varepsilon \)-transfer upper semicontinuous on \(K \) relative to \(Y \), and the set \(\{ x \in K : f(x, y) > t \} \) is a nonempty \(\Gamma \)-convex set for each \(y \in Y \) and each \(t \in \mathbb{R} \);

(3) the function \((x, y) \mapsto f(x, y) - \sup_{u \in X} f(u, y) \) is \((-\varepsilon) \)-transfer lower semicontinuous on \(Y \) relative to \(K \), and \(\{ y \in Y : f(x, y) < t \} \) is a nonempty \(\Gamma \)-convex set for each \(x \in K \) and each \(t \in \mathbb{R} \).

Then \(f \) has a point \((x^*_x, y^*_y) \in K \times Y \) such that \(f(x^*_x, y^*_y) - \varepsilon < f(x^*_x, y^*_y') < f(x^*_x, y^*_y) + \varepsilon \) for all \(x \in X \) and \(y \in Y \).

Proof. Let \(\varepsilon > 0 \). Define multimaps \(A : K \rightharpoonup Y \), \(T : X \rightharpoonup Y \) and \(S : Y \rightharpoonup X \) by

\[
Ax = \{ y \in Y : f(x, y) - \inf_{v \in Y} f(x, v) < \varepsilon \}
\]

\[
Tx = \{ y \in Y : f(x, y) - \inf_{v \in Y} f(x, v) < \varepsilon \}
\]

\[
Sy = \{ x \in X : f(x, y) - \sup_{u \in X} f(u, y) > -\varepsilon \}.
\]

Then for each \(x \in K \), \(Ax = Tx \), and \(Tx \) is a nonempty \(\Gamma \)-convex set. For each \(x \in K \), there exists a \(y \in Y \) such that \(f(x, y) - \inf_{v \in Y} f(x, v) < \varepsilon \).

By (2), there exists an open neighborhood \(N(x) \) of \(x \) in \(K \) and a point \(y' \in Y \) such that \(f(z, y') - \inf_{v \in Y} f(z, v) < \varepsilon \) for all \(z \in N(x) \), that is, \(N(x) \subset A^{-}y' \); and hence \(x \in \text{Int}_{K} A^{-}y' \). Thus \(K = \bigcup \{ \text{Int}_{K} A^{-}y' : y \in Y \} \). Moreover, \(Sy \cap K \) is a nonempty \(\Gamma \)-convex set for each \(y \in Y \) by (2). A similar argument shows by (3) that \(Y = \bigcup \{ \text{Int}_{Y} S^{-}x : x \in K \} \).

By Theorem 2, there exists \((x^*_x, y^*_y) \in K \times Y \) such that \(y^*_y \in Tx^*_x \) and \(x^*_x \in Sy^*_y \); that is, \(f(x, y^*_y) - \varepsilon < f(x^*_x, y^*_y) < f(x^*_x, y^*_y) + \varepsilon \) for all \(x \in X \) and \(y \in Y \). This completes the proof. \(\square \)

For the case when \(X \) and \(Y \) are convex spaces in the sense of Lassonde [3] and for mere upper (resp. lower) semicontinuous functions, Theorem 3 improves [8, Theorem 1].

From Theorem 3 we deduce the following new saddle point theorem for spaces without linear structure.

Theorem 4. Let \(X \) be a Hausdorff topological space, \((Y, \Gamma_Y) \) a Hausdorff \(G \)-convex space and \(f : X \times Y \to \mathbb{R} \) a real-valued function.
Coincidence and saddle point theorems on generalized convex spaces

Suppose that there exists a compact G-convex space (K, Γ_K) with $K \subset X$ such that

1. for any $(x, y) \in X \times Y$, $\inf_{v \in Y} f(x, v) > -\infty$ and $\sup_{u \in X} f(u, y) < +\infty$;
2. the function $(x, y) \mapsto f(x, y) - \inf_{v \in Y} f(x, v)$ is upper semicontinuous on K relative to Y, the function $x \mapsto f(x, y)$ is upper semicontinuous on K for each $y \in Y$; and the set \(\{ x \in K : f(x, y) > t \} \) is a nonempty Γ-convex set for each $y \in Y$ and $t \in \mathbb{R}$;
3. the function $(x, y) \mapsto f(x, y) - \sup_{u \in X} f(u, y)$ is transfer lower semicontinuous on Y relative to K, and \(\{ y \in Y : f(x, y) < t \} \) is a nonempty Γ-convex set for each $x \in K$ and each $t \in \mathbb{R}$;
4. for every sequence \(\{(x_n, y_n)\}_{n \in \mathbb{N}} \) in $K \times Y$ such that (x_n, y_n) is an ε_n-saddle point of f and $\varepsilon_n \to 0^+$, there exist a subsequence \(\{y_{n_k}\}_{k \in \mathbb{N}} \) and a point $y^* \in Y$ such that

\[
\liminf_{k \to \infty} f(x, y_{n_k}) \geq f(x, y^*) \quad \text{for all } x \in X.
\]

Then f has a point $(x^*, y^*) \in K \times Y$ such that $f(x, y^*) \leq f(x^*, y^*) \leq f(x^*, y)$ for all $x \in X$ and $y \in Y$.

Proof. For each $n \in \mathbb{N}$ with $\varepsilon_n \to 0^+$, by Theorem 3, there is a point $(x_n^*, y_n^*) \in K \times Y$ such that

\[
f(x, y_n^*) - \varepsilon_n < f(x_n^*, y_n^*) < f(x_n^*, y) + \varepsilon_n \quad \text{for all } (x, y) \in X \times Y.
\]

By (4), there exist a subsequence \(\{y_{n_k}^*\}_{k \in \mathbb{N}} \) and a point $y^* \in Y$ such that

\[
\liminf_{k \to \infty} f(x, y_{n_k}^*) \geq f(x, y^*) \quad \text{for each } x \in X.
\]

Since K is compact, there is a subnet \(\{x_{n_\alpha}^*\} \) of \(\{x_n^*\} \) and $x^* \in K$ such that \(\{x_{n_\alpha}^*\} \) converges to x^*.

For each $x \in X$ and each α, we have

\[
f(x^*, y^*) = f(x^*, y^*) - f(x_{n_\alpha}^*, y^*) + f(x_{n_\alpha}^*, y^*)
\]
\[
> f(x^*, y^*) - f(x_{n_\alpha}^*, y^*) + f(x, y_{n_\alpha}^*) - 2\varepsilon_\alpha
\]

17
and hence by the uppersemicontinuity of \(f(\cdot, y^*) \) on \(K \)

\[
\begin{align*}
 f(x^*, y^*) &\geq f(x^*, y^*) - \limsup_{\alpha} f(x^*_\alpha, y^*) + \liminf_{\alpha} f(x, y^*) \\
 &\geq f(x, y^*).
\end{align*}
\]

Next, for each \(y \in Y \) and each \(\alpha \), we have

\[
\begin{align*}
 f(x^*, y^*) &= f(x^*, y^*) - f(x^*, y^*_\alpha) + f(x^*, y^*_\alpha) \\
 &< f(x^*, y^*) - f(x^*, y^*_\alpha) + f(x^*_\alpha, y) + 2\varepsilon_{\alpha}
\end{align*}
\]

and hence by the uppersemicontinuity of \(f(\cdot, y) \) on \(K \)

\[
\begin{align*}
 f(x^*, y^*) &\leq f(x^*, y^*) - \liminf_{\alpha} f(x^*, y^*_\alpha) + \limsup_{\alpha} f(x^*_\alpha, y) \\
 &\leq f(x^*, y).
\end{align*}
\]

Thus, \((x^*, y^*) \in K \times Y\) is a saddle point of \(f \). This completes the proof. \(\Box \)

Note that Theorem 4 is a far-reaching generalization of [8, Theorem 2] and [2, Theorem 3].

Similarly, many other results for convex spaces or \(C \)-spaces can be extended to the framework of \(G \)-convex spaces. In the first author's works on \(G \)-convex spaces, he tried to restrict to write down only essential things.

References

Coincidence and saddle point theorems on generalized convex spaces

SEHIE PARK, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA
E-mail: shpark@math.snu.ac.kr

IN-SOOK KIM, DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA
E-mail: iskim@math.skku.ac.kr