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COMPARISON OF EINSTEIN MANIFOLDS WITH
THORPE MANIFOLDS

HoBuM KiM AND JAEMAN Kim*

ABSTRACT. On Riemannian manifolds of dimension 4 the Einstein
condition is equivalent to the Thorpe condition. In this paper, we
construct a few metrics which are Einstein but not Thorpe, and vice
versa in dimensions larger than 4.

1. Introduction

A Riemannian manifold (M,g) is said to be an Einstein manifold if
it has constant Ricci curvature - i.e., if its Ricci tensor 7 is a constant
multiple of the metric:

T =cg

we call this condition an Einstein condition and this metric an Einstein
metric. On 4k dimensional Riemannian manifolds we can define a gen-
eralized 2k** curvature operator Ry, and if Ry commutes with *, i.e.,
Rop % = * Ry, then we call this condition a Thorpe condition and this
metric a Thorpe metric and this Riemannian manifold a Thorpe mani-
fold.

In the 4-dimensional case the Thorpe condition is equivalent to the
Einstein condition [1]. It is an interesting fact that in the 4—dimensional
case the Einstein condition, which is the extremal condition of the total
scalar curvature of suitable normalized metrics on compact Riemannian
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manifolds (1], can be read off from a purely algebraic condition. For di-
mensions higher than 4 nothing is known about topological conditions
for the existence of an Einstein metric on a manifold. However, a topo-
logical obstruction is known about the existence of a Thorpe metric on
compact oriented Riemannian manifolds [4]. This is reflected the fact
that the Thorpe condition does not imply the Einstein condition in di-
mensions higher than 4. In fact, we shall see some examples of manifolds
whose given metrics are Thorpe metrics but not Einstein metrics, and
vice versa.

2. The p* Curvature Operator and Thorpe Manifolds

Let M be a Riemannian manifold of dimension n and let A?(M) denote
the bundle of p—vectors of M. AP(M) is a Riemannian vector bundle,
with inner product on the fiber A”(z) over the point z [4]. Let R denote
the covariant curvature tensor of M. For each even p > 0, we define the
p™" curvature tensor R, of M to be the covariant tensor field of order 2p
given by

R?(ul,... yUpy U1y - vt ,'Up)

1
~ 2hp) Y e(@)e(B) Rluaq, ta) va), v62)
© a,BES,

++ R(Ua(p-1), Ua(p), V(p-1): V()

where u;, v; € T, M, and S, denotes the group of permutations of (1, ... , p)
and, for a € S, e(a) is the sign of the permutation c.

The tensor R, has the following properties: it is alternating in the first
p variables, alternating in the last p variables and is invariant under the
operation of interchanging the first p variables with the last p variables.
Hence, at each point z € M, R, can be regarded as a symmetric bilinear
form on AP(z). By use of the inner product on A’(z), R, at z may then
be identified with a self-adjoint linear operator R, on A”(z). Explicitly,
this identification is given by

(Rp(ug A v ANup), vy Ao Avp) = Rp(ua, ..., Up, V1, - .., Up)

with u;,v; € T,M. From now on, we will use the same notations for the
p™ curvature operators and the p™* curvature tensors . Let P € G,(M),

86



Comparison of Einstein manifolds with Thorpe manifolds

where the Grassmann bundle G,(M) of oriented tangent p—planes of M
shall be viewed as a subbundle of the unit sphere bundle of A’(M) by
identifying P € G,(M) with ey A--- Ae, € AP(M), where {ey,--- ,€,} is
any oriented orthonormal basis for P. Then

p' Z ea(l A e04(2)) A R(ea(p—l) A evt(p))

a€S,

and suppose p > 0 and ¢ > 0 are even integers with p + ¢ < n. For
P € Gpy(M), let {ey,... ey} be an orthonormal basis for P and let
us consider B = {e; A+ -Ae; |1 < i1 < - -+ <4y < p+q}, then B C Gy(M)
and

e .

BosalP) = o gy 2 Fol@ A Ru(@)

(p+4q) QeP

where Q' is the oriented orthogonal complement of Q in P [4].

Now we can consider the necessary condition for the existence of a
Thorpe metric [4]:

THEOREM 2.1. Let M be a compact orientable 4k—dimensional Rie-
mannian manifold which admits a Thorpe metric, then
k! k!
X2
(2k)!
where x is the Euler characteristic of M and P, is the k'» Pontrjagin
number of M. And in particular x > 0.

| Px|

Proof. The de Rham representation for the k™ Pontrjagin [3] class of
M is the differential 4k—form

[(2k)!)°
W trace (ng * R2k) dv.
Since Ry, commutes with *, it also commutes with ] £ *, where [
denotes the identity operator on /\Qk. Hence Roi(I £ #) is self adjoint
and

0 < trace [Ro(I % *))> = 2 [trace (Ry)® + trace (Rox * Rot)]

and so
trace (Ry)? > |trace (Ror * Rat)]
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that means 1l
> —|P

and this completes the proof. O

3. The Main Result

It is known that in the 4—dimensional case the Thorpe condition is
equivalent to that of Einstein [1]. On the other hand we can prove the
following facts in this section: On dimensions larger than 4 the Thorpe
condition does not imply that of Einstein, and vice versa.

THEOREM 3.1. On 4 dimensions the Thorpe condition is the Einstein
condition.

Proof. If we consider Ry = R in S? /\2 T*M* as a linear map of
A’ T*M* and if we decompose

N1Tmi= N'T'mre \ T M

where A" T*M* is the (+1)—eigenspace (self-dual space) and A\~ T*M*
is the (—1)—eigen space (anti-self-dual space) of the Hodge * operator,
respectively, then we get the following expression for R [1],
self-dual  anti-self-dual
R - W*+ £Id|  ric, self-dual
- ric, |W™+$1d anti-self-dual

where s is the scalar curvature, ric, is the traceless Ricci curvature,
W+ is the self-dual Weyl curvature, and W~ is the anti-self-dual Weyl
curvature.

It is possible to interpret R* = %R as R (self-dual) = self-dual , R
(anti-self-dual) = anti-self-dual:

R * (Al) = R(Al) = A2 + B2

on the other hand

*R(Al) = *(A2+B2) = A2 —32
where A, Ay € A" T*M* and B, € \” T*M*. Hence, R* = * R implies
BQ = 0, i.e., R(Al) = AQ.
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In the same way
R x (By) = R(—B1) = —A; — B3
on the other hand
* R(B1) = x (A3 + Bs) = A3 — B3

where A3 € A" T*M* and By, B; € A\™ T*M*. Hence R* = * R implies
A3 = 0, i.e., R(Bl) = Bg.

Therefore we can conclude that * R = R * is equivalent to the vanish-
ing of the traceless Ricci curvature which means the Einstein condition
and this completes the proof. |

Now we can see examples which are not Einstein manifolds but Thorpe
manifolds, and vice versa in dimensions larger than 4.

THEOREM 3.2. (i) S* x H% with a product metric of standard ones,
(ii) CP? x CH? with a product metric of standard ones,
(iii) the canonical quaternion projective space HP™ with n > 3.
Both (i) and (ii) are not Einstein manifolds but Thorpe manifolds, and
(iii) are not Thorpe manifolds but Einstein manifolds.

Proof. The curvature R of a Riemannian product manifold of M with
N is
R = Ry + Ry,

where Ry, Ry are curvatures for M, N, respectively. And hence, in
the case of (i), the only non-zero terms in the 4k** curvature tensor are
those which are products of sectional curvatures. All the other terms are
zero. And hence we can verify, case by case, that the product metric is a
Thorpe metric [2]. However, the product metric cannot get an Einstein
constant because the Ricci curvature of a product metric is the addition
of each one which has different constant signs. Hence (i) are not Einstein
manifolds but Thorpe manifolds. The same kind of argument can be
applied to the case of (ii) together with the property of kahler and hence
we can easily verify the Thorpe condition [2]. However, the product
metric is obviously not an Einstein metric because each one has different
constant signs. On the other hand the curvature tensor R of the canonical
quaternion projective space HP™ (n > 3) does not satisfy the Thorpe
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condition [2]. For instance, on HP?,
Rs (e1, €0, €3, €3, Jes, Kes, ey, €3, €3, Ie3, Jes, Kes)
7é R6 (161, Jel, Kel, 162, J€2, Keg, Iel, Jel, Kel, I€2, J€2, K€2)

where I,J and K are the almost complex structures and Rg is the 6%
curvature tensor.

However, the canonical quaternion projective space HP" are Einstein
manifolds {1]. Therefore (iii) are not Thorpe manifolds but Einstein
manifolds and this completes the proof. g

REMARK. CP? x CH**(n > 2) with the standard product metric are
not Thorpe manifolds [2]. On the other hand the canonical quaternion
projective space HP"(n < 2) are Thorpe manifolds {2].
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