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LOWER BOUNDS ON THE HOLOMORPHIC
SECTIONAL CURVATURE OF THE BERGMAN
METRIC ON LOCALLY CONVEX DOMAINS IN C»

SANGHYUN CHO' AND JONGCHUN LM

ABSTRACT. Let 2 be a bounded pseudozonvex domain in C* with
smooth defining function r and let 2o € b2 be a point of finite type.
We also assume that 2 is convex in a neighborhood of zp. Then we
prove that all the holomorphic sectional curvatures of the Bergman
metric of Q are bounded below by a negative constant near zg.

1. Introduction

Many questions about the complex function theory in C" can be ex-
plored by examining an appropriate hermitian metric and its curvature
tensor on the domain in question. Among these metrics the Bergman
metric is one of the most important metrics, and the information about
the lower bounds of the holomorphic sectional curvatures of the metric
has been used to characterize dowains of holomorphy [9]. However, the
abstract nature of the metric makes it difficult to obtain informations
about the curvature tensor except in some special cases.

It has been well known that for any bounded domain in C", the holo-
morphic sectional curvature of the Bergman metric is lesc than or equal
to 2. Using Fefferman’s asymptotic expansion of the Bergman kernel,
Klembeck [5] showed that for smoothly bounded strongly pseudocon-
vex domain in C™, the holomorphic sectional curvatures of the Bergman
metric approach —ni“, that of the ball, near the boundary. For weakly
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pseudoconvex domains, however, much less is known except some spe-
cial cases 3,6]. In [6], J. McNeal showed that the holomorphic sectional
curvatures of the Bergman metric for smoothly bounded pseudoconvex
domains of finite type in C? are bounded below by a negative constant.
He used the boundary behavior of the Bergman kernel function and its
derivative estimates.

In this paper, we estimate a lower bound for the sectional curvature
of the Bergman metric for some smoothly bounded pseudoconvex do-
mains in C” near a point of finite 1-type in the sense of D’Angelo [4].
The result is:

THEOREM 1. Let  CC C™ be a pseudoconvex domain with smooth
boundary. If zy € bS2 is a point of finite 1-type in the sense of D’Angelo
and S is convex in a neighborhood of 2y, then there is a neighborhood U
of zp such that all the holomorphic sectional curvatures of the Bergman
metric of Q are bounded below by a negative constant in U.

2. Convex Domains of Finite Type

In this section we investigate the local geometry of the locally convex
domairs of finite type and we get the estimates of the Bergman kernel
function and its derivatives.

Roughly speaking, the Bergman metric is obtained by taking the sec-
ond derivatives of the Bergman kernel function, and the sectional cur-
vature of the Bergman metric is obtained by taking second derivatives
of the Bergman metric. Therefore the lower bounds of the curvature
tensor can be obtained from the derivative estimates of the Bergman
kernel function. In the sequel, we assume that Q is a smoothly bounded
pseudoconvex domain in C" with smooth defining function r.

Let A(f2) be the set of holomorphic functions on 2. The Bergman
kernel Kq(z,%) for § is defined by

Kao(z,7) = sup{|f(2)|* : f € AQ), |Ifllz2e) < 1},

and the Bergman metric is an (1,1) form defined by

(1) 90log K (2,2z) = E 505,
i0Zj

1,7=1

log K(z,Z)dz; A dZ;.
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Set, for 1 < i,j < n and z € Q, g;;(2) = Fi;?]flogK(z,E). Then, if

Y = 118/821 + ... + bp0/0zp, it is well known [1] that the Bergman
length of Y is given by

2

(2) Ba(z:Y) = | Y gii(2)bib;

i,j=1

Let 20 € b2 be a point of finite 1-type in the sense of D’Angelo
[4] and assume that b2 is convex in a neighborhood U of z3. Then
a careful analysis of the local geometry of b2 near zp [2,7,8] shows
that, for each p € 2 sufficiently close to zp and for each € > 0, one
can construct special coordinates z = (z1,...,2,) centered at p, and
positive numbers 71(p, €), . .. , Tn(D, €) which are closely related with the
type of 2p. That is, we have:

PROPOSITION 2.1. After perhaps shrinking U, for every g € QN U
and every € > 0 sufficiently close to 0, there exist coordinates (21, - ,
zn) centered at g, positive numbers T1(g,€), - ,Tn(q,€), and points
P1, - ,Pn € {2z :7(2) = €+7(q)} such that, in the coordinates (z1,- - - ,
zn), the defining function r satisfies

(i) for 1 <i < m,

Tl(qve) < __8_7_'_( ) < Tl(q,e)
T«;(q,f) ~ azi Pl ~ T’i(q’e),
(ii) if i < 7,
or 71(g, €)
— (p) <
azi (p]) ~ Ti(q,f) ’
(iit) if © > j,
or
gz—i(Pj) =0.

Also if we define the polydisc

PE(q) = {z ev: 121' < Tl(q7€)7"' a|2n| < Tn(Q7€)},
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then there exists a constant ¢ > 0 such that cPe(q) C {z € U : r(2) <
€ +7(q)}, where c is independent of € and g € U N Q).

Suppose that ¢',¢% € U N Q. Define
(3) M(q¢*,q?) =inf{e >0 : ¢* € P.(¢")},

where P.(q') is constructed from the coordinates about q! as in Propo-
sition 2.1.

Using the quantities 7;(q,€), i = 1,... ,n, we can estimate the Berg-
man kernel function and its derivatives [7,8].

THEOREM 2.2. Suppose ! CC C™ is smoothly bounded and pseu-
doconvex. Let zy € b} be a point of finite type and assume there is
some neighborhood U of zp so that § is convex in U. There exists a
neighborhood V CC U so that if g € V N,

(4) Ka(g,q) =[] 7i(q,8)7%,
i=1

where § = |r(q)|.

THEOREM 2.3. Let Q, U and 2y be as in Theorem 2.2. There exists
a neighborhood V CC U so that, for all multi-indices u, v, there exists
a constant C,, such that for all ¢*,q> € UNQ

(5) ID*D"Ka(q',q*)| < C [ [ meld", ) 727174,

=1

where § = (|r(¢Y)|+ |r(¢?)|+ M(q}, ¢%)), and where M(q', ¢?) is defined
as in (3).

In terms of the quantities 71(g,9),...,7.(q,d), for § = |r(q)|, the
Bergman length of a vector field Y = 8,0/02z1 + ... + b,0/0z, at g €
U NQ is given by (2],

(6) Ba(gY) ~ 3 lbilni(g, Ir(s))~".
=1
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3. Estimates of Sectional Curvature

The Riemann curvature tensor (R(X,Y)-Z, W) is used to define the
sectional curvature, which plays an important role in the geometry of
Riemann manifolds. At any p € M we denote by 7 a plane section, that
is, a two-dimensional subspace of T,(M). Such a section is determined
by any pair of mutually orthogonal unit vectors X,Y at p.

DEFINITION 3.1. The sectional curvature K (7) of the section 7 with
orthonormal basis X,Y is defined as

K(m) = —R(X,Y,X,Y) = —(R(X,Y) - X,Y).

We now ready to prove Theorem 1. For the time being, g € V N )
will be fixed and we will denote K by K and derivatives of Ko with
subscripts, e.g., 8%/02,02;Kq = K. Set 75(q, |r(q))) = 7, i = 1,... ,n.
If we compare the coefficients in (2) and (6), we obtain from (4) and
(5) that

(M lgis (@) = 772, lgis(@)| S Tz'“lTjﬂl'

Set G = (9i5)1<i,j<n and let P = (Pjx) be a unitary matrix such that
P*GP = D where D is a diagonal matrix whose entries are positive
eigenvalues of G.

For z € C™ with |z| = 1, set b = Pz. Then by (2) and (6) one obtains
that

(8) b*Gb = z*Dx = A\y|z1|2 + - - + Al |?
~ !bllle—z N L

Set z = z¥ = (0,---,0,1,0,0,--- ,0), where 1 is in the k-th place. Then
(8) implies that

Mem Y Pl
J
and hence

(9) detG = A1+ An &

=

k

Il

1

<ZJ: |ij;27j—2).
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LemMMa 3.2. det G =~ [[f_; 72

Proof. Let us fix ¢ € VN Q for a moment. From (9) one ob-
tains that det G < IIP_, 7. 2. Let’s prove the reverse inequality. Set
a; = max{|Py;|%;7 = 1,2,---,n}. Note that P is a unitary matrix.

Therefore a; > % Without loss of generality we may assume that

ay = |P11|2 and

|Pa2f? < |Pral* < -+ < | Panf®.
Since |Pi1|?> > 1, we have |P,1|> < 22! and hence |Pun|? > T(nl—_ﬁ
Since |Ppa|? < =15, we have 2:;11 |Pe2|? > 1 — 15, Assuming that

e
n > 3, we have

1
2>______

for some k9,1 < ks < n — 1. We may assume that ks = 2. Therefore we
have

I1

n
k=1

(S ey ?)> (2%) (iers?) L (e

Continuing, we have |Pyny,_1]? < % and hence

1

P o1’ < ——
l k"n—l 1{ —2(n_1)7

for some kp_1, 1 < k,-1 <n-1. So
n
det G>dc 22 72 (Z ]Pjn|27j‘2> >cn [ %
i k=1

because | Py, |? > Wnlfl_) Here ¢, is independent of § and g. d
Set G~ = (gP?). Then Lemma 3.2 gives us that
(10) 1gP| < 17y
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Then the components of the Riemann curvature tensor, R%, for the
Bergman metric are locally defined by
54
Q
Q- _logK
R = 6z16z10zk(9zl log
63

g K—
e az,azkaz,, 87,07.02,

Pg=1

log K

= Gijgki + GGk — K2 —5 (K K50 — Kie K1)

1 n
+ % > UK Ky — KaoKp) (K K1, — K31Kq)-
p:q=1
Set A = (11, ,Tn), and A% = 7112, for a = (a1, ,Qn)-
We now estimate all the terms on the right hand side of the above
equation. By (4) and (5), We have

(11) |7 K K|

where a; denotes the number of i and 7,1 < i < n, appearing in the

subscripts of K. So A™% =17, 1'rJ Ty Tl—l Similarly, we have

1
]EEKikKﬁ
For the terms in the summation, let T denote any of the terms in the

sum. Combining (4), (5) and (10), and by the method similar as above,
we get

<A™

IT(q)| < C'A°.
For the estimates of g;; gklls, we use the estimates (7) and we get

(12) IRl < CA™e.

LetY =31, bia%i be a holomorphic tangent vector with unit length,
(13) Zgijbigj =1
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Then the holomorphic sectional curvature determined by Y is defined
by
S(Y) = R, bibjbibi.

Note that (13) and the growth conditions (6) and (7) give us

(14) lb;(g)| = 75,

unless |b;(g)| = 0. Hence |b;b;bb;| < A®. In either case (12) and (14)
give us

IS(Y)(9)| <C,

where the constant C is again independent of ¢ € VN2 and § = |r(g)|.
This completes the proof of Theorem 1.
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