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Abstract

In order to resolve a deadlock problem in manufacturing systems, three main methods have
been proposed—prevention, avoidance, and recovery. The prevention and avoidance methods
require predicting deadlocks in advance in order to prohibit them. In contrast, the recovery
method allows a system to enter a deadlock state, then resolves it usually using a common
buffer. In this paper, a deadlock recovery method considering the impact of flexible job
routings is proposed. This method is based on capacity-designated directed graph (CDG)
model representing current requesting and occupying relations between jobs and resources
in order to detect a deadlock and then recovers it.

1. Introduction

In operating and designing automated manufacturing systems, a deadlock has been
frequently encountered as an important problem. A deadlock in a manufacturing system is
a situation where job flow stops completely and cannot be restored simply by waiting [7,8].
The deadlock is also called a circular wait state, where a job is waiting for a resource
being held by another job while occupying a resource that is, in tum, needed by another
job [1]. When this waiting and occupying condition causes a chain reaction, the system
falls into the circular wait state.

In order to handle a deadlock problem in manufacturing systems, three main methods
have been proposed—prevention, avoidance, and recovery. While the deadlock prevention
and avoidance methods prohibit deadlock, the recovery allows a system to enter a deadlock
state, then resolves it usually using a common buffer. The avoidance method requires the
detection of an impending deadlock. Under the impending deadlock state, the next job
movements are possible but will eventually cause a deadlock. To detect the impending
deadlock, future system states have to be precisely predicted. When a system allows jobs
of flexible routings, however, the future state will not be easily predicted. There can be
several alternatives in future states. This implies that obtaining a sufficient condition for
impending deadlock is difficult. Therefore, deadlock avoidance strategies based on the
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necessary condition for an impending deadlock could be developed [13]. These strategies
are somewhat conservative because they regard a non-deadlock state as a potential
deadlock. Because of this conservative characteristic, the avoidance strategies tend to yield
low utilization of equipment by extremely restricting the number of jobs in a system.

In a flexible job routing environment, the deadlock recovery will be more attractive
because of its simplicity. The recovery requires the detection of currentideadlock instead of
impending deadlock. To determine whether the current system is in a state of deadlock or
not, a model representing the waiting and occupying relations of jobs is required. Directed
graphs [2,511], as well as Petri nets [1,3,10], have usually been used to model a system
for the purpose of detection and avoidance. When all jobs in a system have fixed routings,
a deadlock will simply be detected from the graph model. In the case of flexible routings,
the number of next resources in which a waiting job will be processed may be more than
one. By portraying these alternative resources for waiting jobs in a graph model, two types
of deadlocks will be detected. These are classified as permanent deadlock and transient
deadlock. Permanent deadlock refers a state where a set of resources and jobs are
irrevocably blocked, whereas transient deadlock indicates that there is a potential for the
deadlock to resolve itself in time [9]. When the permanent deadlock arises, a recovery
action is always required. In the case of a transient deadlock, on the other hand, the
decision on the recovery action has to be made. Once the action for recovery is decided,
the deadlock can be resolved using a common buffer [4,6,7,12].

In this paper, a deadlock recovery method based on capacity-designated directed graph
(CDG) [13] are developed as means to resolve a deadlock problem occurring in a flexible
job routing environment. This method utilizes a dispatching or a scheduling decision for
job movements. Under the recovery method, a real-time CDG model is created from the
information on current states of the system. Once a permanent or a transient deadlock is
detected in this model, it is resolved using one reserved space in common buffer as
proposed in previous researches on deadlock recovery {9,12].

2. CDG' models for deadlock detection

Capacity-designated directed graph (CDG) was designed to model a system for the
purpose of deadlock detection, prevention, and avoidance. It is formally defined as a 4-tuple
G(N,AM,C), where N represents a set of nodes, A represents arcs that connecting
between nodes, M is the marking of N, and C represents the capacity of N. The number
of current jobs in node n is represented as M(n). In addition, the maximum number of
jobs in node n is restricted to the capacity of C(n).

Resources in automated manufacturing systems can be classified into processing,
storing and transportation resources. In CDG models, processing and storing resources
are represented as nodes. Originally, an arc connecting two nodes depicts the meaning of
occupying and requesting. When a job occupying in the source node requests the
destination node as a next processing resource, an arc connects both nodes.

A CDG" model is created for the deadlock detection from the current system status.
When a resource has a job requesting to move to the next resource, an arc is created to
connect both resources. To complete the model for deadlock detection, the number of
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output arcs of a node should be at most one. Note that in a node whose capacity is
more than one, several jobs may request to move to the next resource at the same time.
If we acknowledge that more than one job in a resource cannot be transported at the
same time, one job among requesting jobs at a resource should be selected for making
the decision on the movement. Also, if fixed job routings are allowed in the system, the
number of possible next resources for the selected job will be one. In this CDG',
therefore, the number of output arcs from a node is assumed to be at most one.

The movement of the job in node #; to node =, represented as an arc ( n;, n;), is

allowed under the condition that the capacity C( »;) is greater than the current number of
jobs in %, ie, M(%n;). If C( n;) is equal to M( ), the job cannot move to the node #;

It is easy to derive the following necessary and sufficient condition for deadlock in CDG'".

Necessary and sufficient condition for deadlock in CDG"
A deadlock occurs in a CDG' G=(N,A,M,C) if and only if there is a cycle, s, in G such
that ”ZEsM( n)= nZEsC( n)

When flexible and alternative job routings are allowed, there can be more than one
next resource for a waiting job. An extended CDG' is considered in this paper so that
these flexible routings are included in the model. In the extended CDG', a set of arcs is
created connecting the resource in which a job is selected for movement to all possible
next resources for the selected job. Therefore, there can be more than one output arc
from a node. In this extended CDG', the above condition is no longer the necessary and
sufficient condition for deadlock. The existence of the cycle satisfying the above condition
indicates either a permanent deadlock or a transient deadlock. Permanent deadlock is
what we call a general deadlock, whereas a transient deadlock, introduced at [9), is just
a potential for deadlock. The following example illustrates the transient deadlock.

Example 1: Four machines (MC1, MC2, MC3 and MC4) process four types of jobs. Each
job type has its own routing as shown in Table 1. For instance, job type 1 is processed
at MC1, then processed at either MC2 or MC3. Finally, it is processed at MC1 again.
Note that job types 1 and 3 have alternative routings. At each machine, an input buffer
(IB) and an output buffer (OB) of capacity one are provided to temporarily store jobs.
For a CDG', a machine and these input and output buffers are represented as one node.
Since each machine processes one job at a time, the node has capacity of three. Figure 1
shows the current status of the system. A job currently occupying a resource is
représented as p(iy) where i is a job type and j is a current operation sequence. For
instance, p(4,1) in output buffer of MC2 belongs to job type 4, and the operation
sequence is 1. That is, p(4,1) is currently in MC2 for the first operation. An extended
CDG" is created in Figure 2. It is assumed that jobs p(1,1), p(4,1), p(3,1) in output
buffers are currently requesting to move to the next resource. In this extended CDG',
there is a cycle {MC1,MC2} in which the number of jobs equals the capacity. This cycle
indicates a transient deadlock. If the next resource for job p(1,1) in the output buffer of
MC1 is decided to be MC2, a deadlock will occur. Otherwise, the deadlock will be
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avoided by transporting the job to MC3 instead of MC2.

As shown in the above example, the transient deadlock state will evolve to either a
deadlock or a non-deadlock according to the job assignment decision for the resource. It
means that the transient deadlock can be resolved simply by an appropriate job
assignment. In the case of permanent deadlock, however, a recovery procedure using a
common buffer is required. The sufficient and necessary condition for permanent deadlock
in an extended CDG" model is obtained as follows.

Necessary and sufficient condition for permanent deadlock in extended CDG'
A permanent deadlock occurs in an extended CDG G=(N,A,M,C) if and only if there is
a set of cycles S in G satisfying the following condition:

Let S={ s, S3,...., Su}, be a set of cycles in G satisfying the condition

ZesM( n;)= nZE:SC( n;). Then, every output nodes of any node in cycle, s,<S, is also

included in cycle, s ;=S

Table 1. Job routings

Job Type Routing
1 MC1MC2/MC3MCl1
2 MC3MC1
3 MC4.MC2/MC3
4 MC2MC1

MC1 MC2
IB OB B |OB

MC3 MC4
1B OB IB OB

Figure 1. Current jobs in a manufacturing system

CMC1)=3 CMC2)=3
MMCI=3 M(MC2)=3

C(MC3)=3 C(MCa)=3
MMC3)=1 MMC4)=1

Figure 2. An extended CDG' model
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Proof: When a node has neither an input node nor an output node, it can be excluded for
the consideration of a possible deadlock. Without loss of generality, therefore, we can
assume that all nodes in CDG" have both input and output nodes. It means that all nodes

in CDG" are included in one or more cycles. Assume that a job in node #z; of an
extended CDG" is in a deadlock state. Let Np={ Np, Np,,..., Np,} be a set of nodes

of G in which the current number of jobs is equal to the capacity. Then, there is not a
path from #,; to n,= Np, where the output node of z, is not in Np If there is such

a path, the job in #; is not in a deadlock state since the job In #; can move to the
output node along the path after the job in #; moves to its output node. Therefore, all
output nodes of #,; are in Np, and any path starting from an output node of #»; is
included in Np. Since all nodes in Np have both input and output nodes, the paths
constitute cycles. In other word, there are cycles in which all nodes are in Np, and any
output node connected from the cycles is included in Np.

The proof for the opposite direction is evident. If all output nodes from a node #; in

cycle s, are included in nodes of S, the job in #; cannot move to its output nodes.

When this condition applies to all jobs in nodes of S, a permanent deadlock arises.
3. Deadlock recovery method using CDG' model

In this section, a deadlock recovery method considering the impact of flexible job
routings is proposed. The deadlock recovery method detects either a permanent deadlock
or a transient deadlock from an extended CDG' model, then resolves it using one
reserved space in a common buffer. Specifically, the deadlock is resolved by moving the
deadlocked job from the machine to a common buffer and reallocating the released
machine to a waiting job. This procedure assumes that one buffer space is reserved
exclusively for the recovery [9,12].

As stated before, it is assumed that a priority list for job movements considering the
flexible job routings is determined by a decision module. Also, it is assumed that at a
resource, at most one job can request a movement to the next resource. Let
{Cp;, n),i=1,2,...,m} be a priority list for job movements, where p; is a waiting
job and #; is the next machine for p; Also, n( p;) and p( n;) are the current machine
of job p; and the job requesting movement at machine #; respectively. By representing
each’ element in the priority list as an arc connecting from n( p;) to #, an extended

CDG" is created. In this extended CDG', the following several cases regarding job
movements exist.

Case 1) There is no waiting job.

Case 2) There is a waiting job that can move to the next resource immediately.

Case 3) All waiting jobs cannot move to the next resource immediately.

3-1) There is cycles { s;,¢=1,2,..., m}, which satisfy condition
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;SM( n)= C(ny).

n,c$
3-1-1) There is cycles that satisfy the necessary and sufficient condition of
permanent deadlock.
3-1-2) All cycles does not satisfy the necessary and sufficient condition of
permanent deadlock.
3-2) There is no cycle that satisfies the condition ;EsM( n;) = ZSC( n;).

n;e

Case 1 is trivial since no job will be considered for movement. In case 2, the waiting job
can be transported to the next resource. In case 3, however, the detection of a deadlock
will be required to identify the deadlocked jobs. Notice that only case 3-1-1 corresponds
to a permanent deadlock state. Figure 3 shows several extended CDG’ models to
illustrate case 3. In this figure, all nodes are assumed to have a capacity of one. When a
node has a job in a processing state, it is represented as a dark circle. As depicted in
Figure 3-a), case 3-2 arises when there is a path such that M( ;) equals to C( ;) for

each node #; in the path. Job p; in node #, and job p, in node =z, are currently
requesting movement to their next resource. However, p3 in node z3 has not yet
requested movement to the next resource. When p3 is presently in a processing state,
this will happen. In this case, waiting jobs p; and ps cannot move to the next resource.

The only way is waiting until the system state changes. Figure 3-b) illustrates the case

3-1-2. This case arises when there is a path that starts from a node in a cycle s; and
ends at a node that is not included in any cycle { s;,7=1,2,..., m}. In Figure 3-b), a

path { #,, n,} belongs to such a path. The number of jobs in the terminal node #n4 of
the path will equal the capacity of that node. Since there is no output arc from the node

n4, the job in that node has not yet requested the movement to the next resource.
This state belongs to the transient deadlock. Even though this state is not a permanent
deadlock, it will be desirable to move waiting jobs p;, p, and p3 in the cycle to their

next resource using a common buffer of capacity one rather than waiting until a system
state changes as in the case of 3-2. Figure 3-c) illustrates the case 3-1-1. Two cycles
satisfy the necessary and sufficient condition of permanent deadlock. In resolving this
deadlock state, a cycle should be selected. Notice that several cycles satisfying the
condition gesM( n;)= ;EsC( n;) may also exist in case 3-1-2. Some decision module

will be required to perform the selection of a cycle for deadlock resolution. Once a cycle
is selected, the movement of waiting jobs in the cyble can be performed using one
reserved space at common buffer.

The following algorithm describes the procedure for the deadlock recovery method
based on extended CDG’ models. The algorithm first finds a job falling under case 1 to
transport the job to the next resource. Notice that the job movement is possible only
when the next resource has a space at the input interface for the entering job. When
such a job is not found, the algorithm detects a deadlock and resolves it using a
common buffer. From all cycles that belong to case 3-1-1 (i.e., permanent deadlock) and
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(a) Case 3.2 (b) Case 3-1.2 {c) Case 3.1-1

Figure 3. Extended CDG" models that belong to case 3

case 3-1-2 (ie, transient deadlock), a cycle is selected to perform movement of waiting
jobs in the cycle.

Algorithm: RecovervBasedOnCDG’
Input: A priority list D={( p;, n;),i=1,2,..., m} for job movements

// movement of a waiting job to the next resource which has a space at an input interface

1 for #1,2,...,m do

2 if resource 7, has a space at the input interface then
3 perform a movement of p; to %, and stop

4 endif

5 endfor

// creation of an arc list L

6 for #-1,2,..,m do

7 if resource 7 ; has a waiting job then

8 if resource % ; will have a space at the input interface by transporting
the waiting job in the resource then

9 add {n( p,), n;} to arc list L

10 endif

11 endif

12 endfor

// Movement of waiting jobs in deadlock state
13 find all cycles from arc list L
14 if no cycle is found then stop

15 else select a cycle ( ny, #,..., N4, to move waiting jobs in each node
16 perform a movement of waiting jobs in the following order

1) perform a movement of p( # 4,) to common buffer
2) perform a movement of p( # py—1) 1O 7 pm

3) perform a movement of p( # pn_9) 10 7 pp_3

km) perform a movement of p{ # ) to n

km+1) perform a movement of a job moved to the common buffer at step 1) to #ny
17 endif
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The complexity of the algorithm depends on computation times to find cycles. To find
a cycle in a graph, a depth—first or a breadth-first search can be exploited. When
elements in the priority list represent arcs in a graph, the complexity of finding all cycles
is X(nx{(m/n)!), where m is the number of elements in the list, and n is the number of
nodes.

4. Simulation experiments

A simulation of a flexible manufacturing cell (FMC) was conducted to analyze the
performance of the proposed deadlock recovery method. The FMC consists of four
machines, an input conveyor, an output conveyor, and a robot. When a job needs to be
transported for the next process, it requests the movement to the robot. Then, the robot
is responsible to transport waiting jobs. When more than one movement Iis
simultaneously requested, a priority list for the movements is created. An early entering
job into the cell has high priority. When the number of next resources for a job is more
than one, the priority for the next resource is randomly given. This dispatching rule is
arbitrarily chosen for the analysis of deadlock recovery method. Four job types as shown
in Table 1 are processed. The processing time at each machine is assumed to be
constant with 10 minutes. Also, it 1s assumed that there are always waiting jobs at the
input conveyor. In addition, each job type is randomly generated with an equal
probability.

In evaluating the CDG'-based deadlock recovery method, the performance is
compared with a static deadlock avoidance method proposed in literature {13]. In the CDG
model for the static deadlock avoidance method as shown in Figure 4, the common buffer
is added as a node. Also, the capacity of the common buffer is set from 1 to 5 to
analyze the effect of buffer size. Notice that the job route from MC1 to MC3 is
represented as two arcs passing through the common buffer in order to resolve the
deadlock, ie., (MC1, CB) and (CB, MC3). By applying this arc replacement mechanism,
each arc in the original CDG without common buffer is replaced with two arcs in the
new CDG in which a common buffer is added as a node to resolve the deadlock. In
Figure 4, three minimal cycles exist. According to the cycle reduction mechanism of CDG
described as in literature [13], each cycle is reduced into a macro node. Also, the
capacity of each macro node is determined as in Table 2.

=6

~——

Figure 6. A new CDG model for static deadiock avoidance

e
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Table 2. Macro nodes in new CDG for static deadlock avoidance

Macro node | Nodes included in a macro node Capacity
Si MC3.CB C(MC3)+Cb-1
S2 MC1.CB CIMC1)+Cb-1
S3 MC2,CB C(MC2)+Cb-1
S MC1.MC3.CB C(MC1+C(MC3)+Cb-2
Ss MCLMC2,CB C(MC1)+C(MC2)+Cb-2
Ss MC1,MC2MC3.CB CIMC2)+C(MC3)+Cb-2
B = MC1.MC2MC3,CB CIMC1H+C(MC2)+C(MC3)+Cbh-3

Table 3. Simulation results of deadlock resolution methods

Deadlock resolution methods Recovery Static _avoidance method

Capacity of common buffer 1 1 2 3 4 5
Avg. work-in-process (# of jobs) 3.62 237 | 314 3.82 465 | 540
Avg. flowtime (min) 106.74 1118.96] 102.61 | 115.58 | 134.00 | 148.26
Avg. throughput rate (# of jobs/480 min)| 204 135 | 19.2 19.7 19.8 | 198
Avg. MC1 0.40 0.27 | 0.37 0.383 038 | 0.38
utilization MC?2 0.26 021 | 0.25 0.26 024 | 0.24
. MC3 0.17 0.08 | 0.16 0.15 0.18 | 0.18
%) MC4 013 1008] 012 | 012 | 002 | 0.12

Table 3 shows the simulation results for both deadlock resolution methods, It is
shown that the system performance of deadlock avoidance method does not improve in
case that the capacity of common buffer is larger than three compared with deadlock
recovery method. When the capacity is less than three, starvation frequently occurs at
each machine. Even if the starvation occurrences decrease as the capacity increases over
three, average flow time increases noticeably, and average throughput rate does not
improve because of frequent blocking. Compared with the static deadlock avoidance
method, the CDG'-based recovery method produces better performance in general.

5. Concluding remarks

In operating automated manufacturing systems, a deadlock caused by inappropriate
job assignments to resources can frequently occur. In deciding a job assignment, job
routings play an important role. When johs have flexible routings, there will be a number
of alternative resources to which a waiting job can be assigned. At a glance, it seems to
provide more chance for a deadlock-free system. This flexibility, however, makes the
deadlock problem difficult to be tackled. The prediction of a future system state that is
required for deadlock prevention and avoidance methods becomes complex. Although an
avoidance method based on the necessary condition for an impending deadlock does not
require precise prediction of a future system state, it tends to restrict the number of jobs
in a system. Hence, the system performance will be undesirable.

In this paper, a deadlock recovery methods based on capacity-designated directed
graph model is proposed. In order to detect deadlocks, an extended CDG" model is
created dynamically. This CDG" model includes only the information on the immediate
next routes of current jobs in the system. The detected deadlock is resolved by using
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one reserved space in a common buffer.

A simulation study shows that the recovery method based on CDG’ model is more
efficient than the static deadlock avoidance method. The static deadlock avoidance method
does not need to create a real-time CDG model. Instead, only one CDG model is created
at the planning phase. However, the conservative nature of the deadlock avoidance
method usually requires a common buffer with a large capacity in order to lessen the
starvation occurrences at machines.
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