Influence of Local Coercivity Variation on Magnetization Reversal Dynamics

  • Choe, Sug-Bong (Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science Technology) ;
  • Jang, Hyuk-Jae (Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science Technology) ;
  • Shin, Sung-Chul (Department of Physics and Center for Nanospinics of Spintronic Materials, Korea Advanced Institute of Science Technology)
  • Published : 2000.03.01

Abstract

Local coercivity variation of Co/Pd nanomultilayers has been investigated by measuring the polar Kerr hysteresis loops of local areas of submicron size using a magnetooptic Kerr microscope system. Interestingly, the local coercivity distribution is very sensitive to an increase in the number of repeats: the $(2-{\AA}\;Co/ll-{\AA} Pd)_10$ sample showed a smooth variation of the local coercivity, while $(2-{\AA}\;Co/ll-{\AA} Pd)_18$ showed a large fluctuation. From micromagnetic considerations based on a thermally activated relaxation odel, we have found that this local coercivity variation has a crucial effect on the contrasting magnetization reversal behavior observed in those samples: dominant wall-motion far the former sample and dominant nucleation for the latter one.

Keywords

References

  1. Appl. Phys. Lett. v.47 no.178 P. F. Carcia;A. D. Meinhaldt;A. Suna
  2. J. Appl. Phys. v.67 no.4459 D. G. Stinston;S.-C. Shin
  3. Appl. Surf. Sci. v.65 no.110 S.-C. Shin
  4. Adv. Phys. v.47 no.511 F. J. Himpsel;J. E. Ortega;G. J. Mankey;A. F. Willis
  5. IEEE Trans. Magn. v.24 no.2464 H.-P. D. Shieh;M. H. Kryder
  6. J. Appl. Phys. v.63 no.3835 C.-J. Lin;J. C. Suits;R. H. Geiss
  7. Phys. Rev. Lett. v.65 no.2054 J. Pommier;P. Meyer;G. Ponissard;J. Ferre;P. Bruno;D. Renard
  8. J. Magn. Magn. Mater. v.80 no.211 M. Labrune;S. Andrieu;F. Rio;P. Bernstein
  9. J. Appl. Phys. v.83 no.6952 S.-B. Choe;S.-C. Shin
  10. J. Appl. Phys. v.85 no.5651 S.-B. Choe;S.-C. Shin
  11. Zhu. Phys. Today v.48 no.34 E. Dan Dahlberg;J. -G. Zhu
  12. Rev. Sci. Instrum. v.61 no.2501 M. R. Scheinfein;J. Unguris;M. H. Kelley;D. T. Pierce;R. J. Celotta
  13. Rep. Prog. Phys. v.57 no.895 E. Bauer
  14. Appl. Phys. Lett. v.61 no.142 E. Betzig;J. K. Trauman;R. Wolfe;E. M. Gyorgy;P. L. Finn;M. H. Kryder;C.-H. Chang
  15. Phys. Rev. B. v.57 no.1085 S.-B. Choe;S.-C. Shin
  16. J. Appl. Phys. v.81 no.5743
  17. Appl. Phys. Lett. v.70 no.3612 S.-B. Choe;S.-C. Shin
  18. Phys. Stat. Sol. (b) v.144 no.385 H. Kronmuller
  19. Phys. Rev. B v.49 no.10810 R. D. Kirdy;J. X. Shen;R. J. Hardy;D. J. Sellmyer
  20. Phys. Rev. B v.53 no.5493 A. Lyberatos;J. Earl;R. W. Chantrell
  21. J. Appl. Phys. v.66 no.3731 M. Mansuripur
  22. J. Appl. Phys. v.61 no.1580