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Control of Nonlinear System with a Disturbance
Using Multilayer Neural Networks

Hong Seok Seong

Abstract: The mathematical solutions of the stability convergence are important problems in system control. In this paper, such
problems are analyzed and resolved for system control using multilayer neural networks. We describe an algorithm to control an
unknown nonlinear system with a disturbance, using a multilayer neural network. We include a disturbance among the modeling error,
and the weight update rules of multilayer neural network are derived to satisfy Lyapunov stability. The overall control system is
based upon the feedback linearization method. The weights of the neural network used to approximate a nonlinear function are up-
dated by rules derived in this paper . The proposed control algorithm is verified through computer simulation. That is, as the weights
of neural network are updated at every sampling time, we show that the output error become finite within a relatively short time.
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L Introduction

The use of adaptive, Lyapunov and variable structure con-
trol techniques are well known methods for the control of
nonlinear systems. In particular, the feedback linearization
method is a popular method for designing controllers for
nonlinear systems. Unfortunately, the exact dynamic equation
of the system must be known for the use of these methods [1]-
[3]-

The mathematical solutions of the stability convergence are
important problems in system control. To solve these problems,
we must know the dynamic equation of the system which
often is not known exactly. For this reason, the dynamic equa-
tion of the system must be approximated. A neural network
can approximate an arbitrary function through learning, and
achieve parallel processing and fault tolerance with ease. That
is, we’ can approximate the dynamic equation of an inexactly
known system by using a neural network. For control prob-
lems, the structure which is used most often in such cases is
the multilayer neural network using the error backpropagation
algorithm. The multilayer neural network can approximate a
nonlinear function to any desired degree of accuracy [4]. A
neural network based controller is proposed in this paper to
control an inexactly known system [5]-[7].

Most control algorithms using neural networks employ the
gradient descent method to update the weights of neural net-
work, but this update rule does not always guarantee the sta-
bility of the system. Recently, the stability of control systems
using neural network has been studied. Yesildirek simulated
the control of a robot manipulator by using a weight update
rule obtained by using the dynamic equation of the robot ma-
nipulator and the Lyapunov function [8]. Jin showed that the
etror between the desired output and the system output is fi-
nite. In this case, he used neural networks such as the
RBF(Radial Basis Function) and CMAC(Cerebellar Model
Articulation Controller) [9]. Jin used a modified backpropaga-
tion algorithm having a dead-zone function for the weight
update rule of the neural network, and showed that the output
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error converges to zero. From this he showed that the global
closed system was stable [10][11]. Renders proved the input
and output stability of the nonlinear system using the RBF
neural network and Lyapunov function [12]. Seong derived a
weight update rule of the neural network on the basis of the
feedback linearization method, and showed that the Lyapunov
stability of system was guaranteed by using this rule [13].

In the case of a system with a disturbance, many robust con-
trols have been studied. In this paper, we derive the weight
update rules of a multilayer neural network for a nonlinear
system with a disturbance. We show that a control system
which consists of this neuro-controller satisfies Lyapunov
stability. The overall control system is based upon the feed-
back linearization method. At the control system, the nonlin-
ear function is implemented with a 3-layer neural network and
its weights are updated by using the derived update rules. The
structure of this paper is as follows: in section II we describe
the feedback linearization method to control the nonlinear
system. In section III we discuss the multilayer neural network
and its weight update rules. In section IV we describe how to
implement the controller described in section II using neural
network. In section V we explain the global structure of the
controlled system and derive the weight update rules of the
neural network which satisfy Lyapunov stability. In section VI
we verify the performance of the proposed control algorithm
through computer simulation. In section VII we provide our
conclusions.

II. Nonlinear system
In this section, we define the assumptions made about the

system and the standard equation of the nonlinear system, and
describe the feedback linearization method used to control the
nonlinear system. Firstly, we describe the following assump-
tions about the system.

Assumption 1: The nonlinear functions f(x) and g(x)

_ are finite, and g(x) is not zero (g(x) # 0).

Assumption 2: The desired states of the system and their
derivatives are finite.

Assumption 3: The states of the system can be measured.

Assumption 4: The disturbance is bounded (d(¢) < d,, ).

The nonlinear system which has a single input/output is de-
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scribed as follows
P = £y Dy gy By Dy )

where ) is the system output and # is the system input,
and f(-) and g(-) are the nonlinear functions. Let us
define the state variable vector X as follows
1 -1
xT = g =W ey 7Dy @
The nonlinear system (1) is expressed in state space using
of the above state variables as follows

,£1=X2

xz =X3
: 3)

xn = fxpsee X, )+ gl X, u
y=x

Now, define the tracking error as e=y; —y . Here, y, is
the desired system output and y is the actual system output.
If the nonlinear functions f(-) and g(-) of the nonlinear
system are known exactly, the control input » which is made
to follow the desired output can be expressed as follows

~ fyDkTe
ALY il

4
g(x) @

where kI = (k) Is the vector selected arbitrarily, at
this time h(s) = s" +kns"—1+~+k1 becomes the Hurwitz
equation, and e is the tracking error vector defined as fol-
lows

F = (e, 8Dy =y DO =D_ 1))
©)

If we substitute the control input (4) into the function of the
nonlinear system (1), the following error equation is obtained.

€ ke D thye =0 6)

Therefore, because k 1is the vector which satisfies the

Hurwitz condition, we know that the lim e(?) is zero. That is,
t—o

if (4) is used as the contro] input, we know that the output of
the nonlinear system follows the desired system output.

II1. Multilayer neural network
A given nonlinear function can be approximated by a neural

network to any desired degree of accuracy. We can describe
this fact as follows[4].

Theorem 1: The neural network f (x,V* ,w* ) and
g(x,V} ,w}) with the optimal weight V},w} Vg Wy is able
to approximate the continuous functions f(x) and g(x)
within arbitrary degree ¢,.,6, ina compact area. That is,

max|f(x, V;, W) = f(0)] < ¢,

max|§(x, V;, W) - g(®)| <¢,, all xeC

where C is the compact area with the finite order.
Using this theory, the nonlinear function of the nonlinear
system is implemented as

f=whs (Vix),8 =whs, (V%) @)

where V )V, are the hidden layer weight matrixes in
R 6:;, xn;) of the multilayer neural networks used to
approximate the nonlinear functions f(:),g() respectively,
and wyw, are the output layer weight vector in R
(myx1), n; is the number of the inputs in the input laygr, and
ny, is the number of the neurons in the hidden layer. §€7Tx3

T
means [S(V{X),---,S(VT x]:| and V,T means [vlir""vn-i] .
nh i

The mapping s(-): R"™ — R"™ is the vector valued activa-
tion function and each element of s(-) is denoted as s(-)

which is defined as follows:

s(x) = ——. ®)

l+e”*

The weights of the neural network are updated as defined in
(9) and (10). First, the weights of the hidden layer are updated
as

Vf = —eTPbxwfstf Helv, .
V, =—ePbuxwD,_ eV,
4

where D_ is the diagonal matrix which has the derivative of
the sigmoid function in diagonal elements. That is,

D_ Ediag[slsz-nsnh]. The derivative s of the sigmoid

function is the derivative of the output of the neuron and is
expressed as s =o{l-0), where o is the output of a neuron.
The weights of the output layer are updated as

¥, =-ePb(3, D, Vx) +]lw,
| / (10)
%, =-'Pbufs, -0, V) + 4, .

This weight update rules are derived for the proof of Ly-
apunov stability. The weight update rules are derived in the
section V.

IV. Controller using muitilayer neural network
In section II, if the nonlinear function of the nonlinear sys-

tem which is expressed as (1) is known exactly, we know that
(4) can be used as the control input for the case of non-
disturbance. However, in a real environment, we do not know
the exact nonlinear function of the nonlinear system, and there
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is often a disturbance present. A nonlinear system which has a
disturbance can be described as follows

¥ = f oy Oy Mgy Oy Dyura (1)

where d is the disturbance. Therefore, an unknown nonlinear
function is implemented by using the multilayer neural net-
work based on the theory defined in section III and the control
input « defined in (12). A disturbance shall be treated as the
modeling error. Therefore, by using the control input in (12)
and the weight update rules of the neural network in (9) and
(10), we will show in section V that the output error and the
weight errors become finite.

—f e+ + ke
=

12
30 (12)

Here, f () and g() are the outputs of the multilayer

neural network approximating the nonlinear function. To ob-
tain the error equation, substitute the control input (12) into
the system equation (11), which gives

e =y _y = kTe+{f(x)—f”(x)}+{ g -2} u+d. (13)

If we express the error equation (13) by the means of track-
ing error vector (5), we get the following error state equation

e=Aeb[{f(0-FW+{g@-g) urd]  (19)

where Ab isas

0 1 0 0 0
0 0 1 0 0

A= : N N (15)
0 0 0 1
—k —ky —ky - —k, 1

V. Stability of system

In this section, we derive the weight update rules of the neu-
ral network ((9), (10)). During the derivation of the rules, we
will show that the output error is bounded.

Subsequently in order to use the stability theory, the follow-
ing is described [14].

Theorem 2: Consider the differential equation

x = f(x)

Let D be a bounded neighborhood of the origin and let
D° be its complement. If ¥(x) is a scalar function with
continuous partial derivatives in D¢ and satisfies the follow-

ing conditions, the solution of the given differential equation
is bounded forall ¢>0.

i) V(x)>0Vxe D¢

i) V(x)<0 VxeDS

iii) lim V' (x) - o

(L

Fig. 1 is the global block diagram of the closed loop control
system. We use 2-multilayer neural networks for the nonlinear
functions f() and g().

A d Vg Y
3-lay

Controller » System

Fig. 1. The block diagram of the control system.

The following is the characteristic of the sigmoid function
s(x) , and we use it when we derive the weight update rules of
the neural network.

Lemma 1: The sigmoid function s(x) has the following

characteristic.

1) The sigmoid function is strictly increasing.
2) £>0
dx

3) E(x, ,x2)=s(x1)_s(x2):£f_ b

X=Z

where ¥=x-x, and x=ze(x, xp)

Proof: 1) 1t is self-evident by the following definition of the
sigmoid function.
1
l+e™™

s(x) = (16)
2) By 1), the sigmoid function is always strictly increasing and
its first derivative is therefore positive. 3) s(x) defined as
(16) is continuous in all x, and has a continuous first deriva-
tive. Therefore, by the mean value theorem,

(xl —xz)

~ ds
8 (xp,x2)=5(x1)—5(x)=—
dx|,_,

where z is a point between x and x, . Consequently,

~ ds
5(x.x0) = 2

x=z

We will now describe the following fact about the norm of
the input of the neural network and we will use it when we
derive the weight update rules of the neural network. [ |

Fact 1: The norm of the input x of the neural network
satisfies the following inequality.

Ixl<eilyalfeeael (17)

The ¢ and ¢, are ¢ >1and c,>1.

Proof:
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- e
= \/(yd - e)2 + (y;l) (1)) (ysn, D _ D )2
= \/qudhz + "e”2 — 2(yde+ y(l)e(l) bt yf,""‘)e(""”))

< afval+eclel

Now, We can define the following theory. [ |

Theorem 3: Under assumptions 1 to 4 given in section II,
if the weights of the multilayer neural network are updated by
(9) and (10), the control input (12) makes the output error and
the weight errors of the neural network finite.

Proof: First of all, we can modify the previous error equa-
tion (14) as follows

e= Ae+bH 7 ® —}(x)}+{ g (%) -2(%) u}+bg+bd (18)

where f *(') and g*(-) are the values of the nonlinear func-
tions using the optimal weights of the multilayer neural net-
work, j; () and g() are the values of the nonlinear func-
tions using the current weights of the multilayer neural net-
work, and ¢ is defined as (19). In the equation (19), f()
and g() are the real values of the nonlinear function, and &
is the difference between the real value of the nonlinear func-
tion and the value of the nonlinear function using the optimal
weight of the multilayer neural network. We call this the mod-
eling error of the nonlinear function due to the neural network.

={f0-F @} +{g@-F@}u. 19
Now, let us define the following Lyapunov function
V=L per LT + Lalw, + LoV IV, | 1o VI9, ]| @0)

where W is the difference between the optimal weight and
the currens weight of, the output layer in the multilayer neural
network (W:w*—w , and V is he difference between the
optimal weight and the current weight of the hidden layer in
the multilayer neural network V=v'-Vv].

Differentiating (20) gives

V ;TPe+ TPe+wfwf+w§ g+tr{Vfo:|+tr|:VgT\N7g1.

e2))

Substituting the error equation (18) for (21) gives
V=te’(ATP+ PA)e+eTPb(e+d)+eTPb{ (7 —jf)+ (g' —g) u}
+w;wf+w;wg+zr[v; \"%,}t{v; v} .

(22)
Define a Lyapunov equation as follows

ATPipPA=-0Q. (23)

where P and Q are the positive definite symmetric matrix.

In (22), f = f can be modified as follows.

'\\)

o f= w}Ts}—w;sf

T ¥
—Wf Sf—Wfo+Wf f—wf Sf
=(Wf _wf)rgf“wa (sf_gf)

_W§§ +wf f+wff

60

In order to modify s, define the variables.

}"“Vz ayt_ TX (25)

vi = (v V) =iy
5 is modified by lemma (3) as follows
$i=5 050
(V:TX - V,TX) (26)

where z; is a value between y; and y; and E(VT x) is

modified as follows
5(vix)=p . Vlx 27
s
where s = dzag[s §lyeeeees "h:| .
Substitute (27) for (24) gives

_aTa ~T T T T
ﬂ—f_ WS, +wa| Vix + w,DS,fox

= Wi§, + WD (V V)Tx+w;Dl\7Tx (28)

=wf(sf -D, Vx)+w/D \4 x+w/D VT

¥

g —¢ can be modified similarly.
& -4=w(3, -0, VIxriD, ViTxewlD, Vlx (29)

Substituting (28) and (29) for 4 (22) gives
V= —%eTQe+eTPb(£+d)
+W ?{Wﬁe Pb(sf -D,, Vf j}

{W ot eTPbu(§g D, \/ x)}

+ tr{V}[v f+eTPbxw§Ds,/ ]}

+ tr{VgT [\N/;g+eTPbuxwgDS,g ]}

+e’ PbWD,, vf x+e PbuwgD Vg x

+w

0Q ~

(30)
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We substitute the following weight update rules of the neu-
ral network for (30). '

Wy =—eTPb(§ £-D;, v}xj Hlelw 1

g =—eTPbu(3, D, VEx) e

(31
S T T
\% r=—¢ Pbxw fDS/ +||e||Vf
\N}g =—eTPbuxwgDs +||e||Vg
g
and obtain
V= —%eTQe+ €'Pb(c+d)+|e| Ww, +|e] W] w,
+leller{ V7V, }+leller{ ¥ V. } (32)

+ePbW; DV x+e'PbuWw,D, V, x .
sy 8 sy 8

|||| means the norm of vector. For notational convenience,

define the matrix of the output layer weights for two nonlinear
function as

Rs[wf 0 ] (33)

0 w

where 0 is a zero vector. Substituting matrix R for (32)
gives
V= —%eTQe + eTPb(g + d)+ "e”tr{ﬁTR}
el S v ) 64
+eTva~v§Dsf Vix+el Pbuv~v£Dsg Vg x.
This inequality is satisfied as follows from (34).
. 1 ~
V<= [Qllel +[ellPb(z, + )+ efer{ RR}
*leller { V7V, )+ lellor{ V7V, -+ ellPof [, |

[v:[li]

D

51

uv;||||x|| (35)

+lelleblfu]%, |

Sz

where |Q| means 4,,(Q) and |¢|<¢, .And assumption 4

is used.
From (35) and the previous Fact (17), the following ine-
qualities can be obtained.

Vy

[ellleo]| /| Ij<cslel| [lcilyal < lel)

<call el +esff e

el |

Substituting (36), (37) for (35) results in

D
Sy

(36)

*
Vg

D
Sg

IchsealelJlll s Jlel” -~ 37)

v <=2 1allef + elPol(c, +4.)+leler R (R - R)}

+ ||e|]tr{\7f’ (v;-V, )} + ||e||tr{\"gT (V;-V, )}

+ eyl e+ o el + el e+ s |, el -

(3%

(38) is modified as follows

7 < I {3101 (i = . )l
~{lbl(a, +d )+ e, (¥, ]+ |u|||v"vg")}:|
- Tel{IRIQR]- R D)+ 19| %=1V DIVl 0% -1V} -

(39)

\

From (39), we can define the region D{ (e Vf,Vg,f{)}
including the origin as follows

[Pbe + )+ cali | +|umv~vg||),
Sl -es |+l )

DYV, ¥, R)s
(40)
I¥]< =1 <

* *
Vv Ve

Vg” <

g

Therefore, ¥ <0 at the complement D° of the region
D{(e,\N’ r ,\~7g ,f(} , and by the previous described stability theory,

because the solutions of the differential equation (18) and (31)
are finite, the output error and the weight errors of the neural
network are bounded.

VI. Simulation
The proposed algorithm was analyzed for two single-input

and single output (SISO) systems. For the computer simula-
tions, we used the inverted pendulum system and the one-link
manipulator as SISO systems because we can know their dy-
namic equations more exactly.
1. Inverted pendulum system

The dynamic equation of inverted pendulum system is as
follows[15]

X1 =X

. mlx% COs x| sinx €OS X
gsinx - N N
m,+m m.+m
Xy = CZ : < S u “n
] 4 mcos” x; ] 4 mcos” x
3 m.+m 3 my+m
Yy=x

where g= 9.8m/s?, m, =1lkg,m=0.lkg, and [=0.5m . We
used two 3-layer neural networks to let f(+) and g(*)

learn respectively. Because the order of system is two, the
number of neural network inputs is two. We used 20 neurons
in the hidden layer. The parameters of the controller were set
as follows: k7 = [6.0,8.0] , and the disturbance d(¢)=0.05cos¢? .
The initial value of the weights in the neural network was set
as a random value between -0.01 and 0.01, and the learning
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rate of neural network at 0.4. The sampling time of controller

as 10, msec. The initial values of system state were
‘(— 4 ) We used the fourth order Runge-Kutta method for
the (% rential equation. The desired output of system was
Vi = ismﬁz—{]

F1g39 show tHe output of system and the output error. Fig.
3 shows the derivative of system output and its error. Fig. 4
shows the control input.

Fig 2 shows that there was a small output error until about
10 sec, but after 10 sec this output error become insignificant,

and the system output followed the desired system output.

0.15
0.1 »
0.05 \
‘;
xt 0 f .
If K
o} 5«
-0.05 F
-01 t
-0.15
time(sec)
l desired output - - - system output — - erroT|

Fig. 2. The desired output, the system output and the error.

Similarly, the velocity of system output followed the desired
velocity of system output (in fig 3). At the same time, we can
see in fig 4 that the used control input is uniform.

0.2
0.15 \

AN
\1 ;

1\ vk

-0.15

7=

time(sec)

desired output - - - systemoutput — - error

Fig. 3. The Desired output derivative, the system output
derivative and the error.

/\ ANVAWANWA
N VAR VEARY AT Ay

time(sec)

[=]

Fig. 4. The control input.
2. One link manipulator
The dynamic equation of a one-link manipulator is as

follows [10]

T(£)=mi*§(1)+vO(t)+mgl cosO(f) 42)

where the length /, mass m, friction coefficient v, and
gravity constant g were respectively /=1m, m=2.0kg ,
v=1.0kgm2/s , and g=9.8kgm/s2 . The conditions for the
multilayer neural network and the controller parameter were
same as the conditions described in section VI-1. The
disturbance was d(¢) =cost and the initial values of system
state  (0,0) . The desired output of system was y,=
10sin(0.57rt). Fig. 5 shows the output of system and the
output error. Initially, there was a small output error, but this
output error gradually decreased.

tume(sec)

- - system output— - enor

deswed output

Fig. 5. The desired output, the system output and the error.

From the simulation results, we see that if we control the
system using the proposed algorithm, the system output fol-
lows the desired system output.

VII. Conclusion

Until now, many researchers have used neural networks for
system control. However, the mathematical solution of the
stability convergence, which is an important problem in sys-
tem control, received little attention. In this paper, such prob-
lems were analyzed and resolved for system control using
multilayer neural networks. We derived the weight update
rules of a neural network and proved that the output error and
the weight error became finite. We verified the performance of
the proposed algorithm through computer simulations. We
also considered a nonlinear system with a disturbance. As the
weights of neural network were updated at every sampling
time, we showed that the output error became finite within a
relatively short time. We expect that the proposed algorithm
will be able to solve control problems for nonlinear systems
for which the dynamic equation is not known exactly, and for
which a disturbance is present.

As a further study, it is suggested that the control of MIMO
systems using multilayer neural networks with multi-outputs
be studied, considering the stability of the system at the same
time. In the case of multilayer neural network with two or
more hidden layers, the weight update rules guaranteeing the
system stability have to be studied, as well.
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