Growth characteristics of single-crystalline 6H-SiC homoepitaxial layers grown by a thermal CVD

화학기상증착법으로 성장시킨 단결정 6H-SiC 동종박막의 성장 특성

  • Published : 2000.02.01

Abstract

As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.

Silicon carbide(SiC)는 뛰어난 전기적, 열적, 물리적 특성 때문에 내환경 전자소자용 반도체 재료로 널리 연구되고 있다. 본 연구에서는 화학기상증착법으로 단결정 6H-SiC 동종박막을 성장시키고 이의 성장 특성을 조사하였다. 특히, 몰리브덴 (Mo)-plate를 이용하여 SiC를 코팅하지 않은 graphite susceptor를 사용한 6H-SiC 동종박막 성장조건을 성공적으로 얻었다. 대기압 상태의 RF-유도가열식 챔버에서 CVD성장을 수행하였고, <1120> 방향으로 $3.5^{\circ}$off-axis된 기판을 사용하였다. 성장 박막의 결정성을 평가하기 위하여 Nomarski 관찰, 투과율 측정 , 라만 분광, XRD, 광발광(PL) 분광, 투과전자현미경(TEM) 측 정 등의 방법을 이용하였다. 이상과 같은 실험을 통하여, 본 연구에서는 성장온도 $1500^{\circ}C$, C/Si flow ratio ($C_3H_8$ 0.2 sccm, $SiH_4$ 0.3 sccm)인 성장조건에서 결정성이 가장 좋은 6H-SiC 동종박막을 얻을 수 있었다.

Keywords

References

  1. Appl. Phys. Lett. v.59 L. G. Matus;J. A. Powell;C. S. Salupo
  2. IEEE Electron Bevice Lett. v.13 M. Bhatnagar;P. K. McLarty;B. J. Baliga
  3. Amorphous and Crystalline Silicon Carbide v.Ⅳ J. W. Palmour;J. A. Edmond;H. S. Kong;C. H. Carter Jr;C. Y. Yang(ed.);M. M. Rahman(ed.);C. L. Harris(ed.)
  4. J. Crystal Growth v.115 A. Suzuki;Y. Fujii;H. Saito;Y. Tajima;K. Furukawa;S. Nakajima
  5. Optoelectronics-Devices and Technologies v.7 T. Yamaguchi;Y. Ueda;Y. Matsushita;K. Koga;T. Niina
  6. Proc. IEEE 79 R. J. Trew;J. B. Yan;P. M. Mock
  7. Res. v.7 J. H. Edgar;J. Mater
  8. Appl. Phys. Lett. v.65 S. Jang;T. Kimoto;H. Matsunami
  9. Proc. 21th Int. Symp. on Compound Semiconductors T. Kimoto;A. Itoh;A. Akita;S. Jang;H. Matsunami
  10. MRS 1994 spring meeting, paper D2.5 J. W. Palmour
  11. Solid State Technology Technology News
  12. Panel Discussion, Symp. D. Diamond, MRS 1994 spring meetings Sic and and Nitride Wide-bandgap Semicondutors
  13. MRS 1994 spring meeting, paper D9.15 M. Tuominen;R. Yakimova;R. C. Glass;T. Toumi;E. Janzen
  14. Ext. Abst. of the 19th Conf. on Solid State Devices and Materials N. Kuroda;K. Shibahara;W. S. Yoo;S. Nishino;H. Matsunami
  15. J. Appl. Phys. v.64 H. S. Kong;J. T. Glass;R. F. Davis
  16. Phys. Rev. v.B33 S. Nakashima;H. Katahama;Y. Nakakura;A. Mitsuishi
  17. Jpn. J. Appl. Phys. v.29 Y. Matsushita;T. Nakata;T. Uetani, T.;Yamaguchi;T. Niina
  18. Electrochem. Soc. v.124 A. Suzuki;H. Masunami;T. Tanaka, J.
  19. Phys. Rev. v.B22 M. Ikeda;H. Matsunami;T. Tanaka
  20. Res. v.9 F. R. Chien;S. R. Nutt;W. S. Yoo;T. Kimoto;H. Matsunami;J. Master
  21. IEEE Electron Device Lett. v.16 P. M. Shenoy;B. J. Baliga