The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy

HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구

  • Published : 2000.06.01

Abstract

The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

수평전기로에서 $CuGaSe_2$다결정을 합성하여 HWE(Hot Wall Epitaxy) 방법으로 $CuGaSe_2$단결정 박막을 반절연 성 GaAs(100)기판 위에 성장하였다. $CuGaSe_2$단결정박막은 증발원의 온도를 $610^{\circ}C$, 기판의 온도를 $450^{\circ}C$로 성장하였다. 이때 성장된 단결정 박막의 두께는 2.1$\mu\textrm{m}$였다. 단결정 박막의 결정성의 조사에서 20K에서 광발광(photoluminescence) 스펙트럼이 672.6nm(1.8432 eV)에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)도 138 arcsec로 가장 작아 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293 K에서 각각 $4.87{\times}10^{23}$ electron/$m^{23}$ , $1.29{\times}10^{-2}$$\m^2$/v-s였다. $CuGaSe_2$ 단결정 박막의 광전류 단파장대 봉우리들로부터 20K에서 측정된 $\Delta$Cr(crystal field splitting)은 약 0.0900 eV $\Delta$So(spin orbit coupling)는0.2493 eV였다. 20K에서 광발광 봉우리의 667.6nm(1.8571 eV)는 free exciton($E_x$), 672.6nm(1.8432 eV)는 acceptor-bound exciton 인 $I_2$와 679.3nm(1.8251 eV)는 donor-bound exciton인 $I_1$였다. 또한 690.9nm(1.7945 eV)는 donor-acceptor pair(DAP) 발광 $P_0$이고 702.4nm(1.7651 eV)는 DAP-replica $P_1$, 715.0nm(1.7340 eV)는 DAP-replica $P_2$, 728.9nm(1.7009 eV)는 DAP-replica $P_3$, 741.9nm(1.6711 eV)는 DAP-replica $P_4$로 고찰된다. 912.4nm(1.3589 eV)는 self activated(SA)에 기인하는 광발광 봉우리로 고찰되었다.

Keywords

References

  1. Ternary Chalcopyrite Semiconductor: Growth, Electronic Properties and Applications J.L.Shay;J.H.Wernick
  2. Appl. phys. Lett. v.49 R.C.Eckardt;Y.X.Fan;R.L.Byer;C.L.Marquardt;M.E.Storm;L.Esterowitz
  3. Appl. phys. Lett. v.44 T.Elsaesser;A.Seilmeier;W.Kaiser;P.Koidls;G.Brandt
  4. IEEE Trans. Electron Device v.37 W.E.Devaney;W.S.Chen;J.M.Stewart;R.A.Mickelsen
  5. IEEE Trans. Electron Device v.37 B.M.Basol;V.K.Kapur
  6. J. Appl. Phys. Rev. v.B6 H.M.Kasper
  7. J. Phys. Chem. Solid v.27 L.S.Lerner
  8. J. Luminescence v.15 C.Paorici;N.Romeo;G.Sberbeglieri;L.Tarricone
  9. Appl. Phys. Lett. v.30 N.Romeo;G.Sberveglieri;L.Tarricone;C.Paorici
  10. Phys. Rev. v.B6 B.Tell;H.M.Kasper
  11. Jpn. J. Appl. Phys. v.17 M.Suaski;T.Miyauchi;H.Horinaka;N.Yamamoto
  12. Appl. Phys. Lett. v.26 H.Matthes;R.Viehman;N.Marschell
  13. J. Crystal Growth v.125 P.Korczak;C.B.Staff
  14. J. Vac. Si. Technol. v.15 A.Smith
  15. J. Appl. Phys. v.69 J.Arias;M.Zandman;J.G.Pasko;S.H.Shin;L.D.Bubulac;R.E.Dewanes;W.E.Tennart
  16. Thin Solids Films v.10 K.K.Muravyeva;I.P.K.Kinm;V.B.Aleakvsky;I.N.Anikin
  17. Thin Solids Films v.9 J.T.Calow;D.L.Kirr;S.J.T.Owen
  18. Elements of X-ray Diffractions B.D.Cullity
  19. Nouvo Ciouvo Cinento v.D2 no.6 L.Nartinez;S.A.Lopez Rivera;V.Sagredo,Ⅱ
  20. Crystal Orientation manual Elizabefh. A. Wood
  21. J. Phys. Soc. v.20 H.Fujita
  22. Optical Process in Semiconductor J.I.Pankove
  23. Z. Physik v.3 den,R.B.;GudPohl
  24. Z. Physik v.5 B.Gudden;R.Pohl
  25. Photoconductivity of Solids R.H.Bube
  26. Physica. v.34 Y.P.Varshni
  27. Physical Review Letters v.29 H.M.Kasper;J.C.Shay
  28. Japanese. Journal of Applied Physics v.17 Masami Susaki;Takeshi Miyanchi