Effect of Ti substitution on electrochemical properties $Li_{0.44}MnO_2$ synthesized by solid state reaction

고상반응법에 의해 제조된 $Li_{0.44}MnO_2$의 전기화학적 성질에 미치는 Ti 치환의 영향

  • 황광택 (요업기술원 도자기센터) ;
  • ;
  • ;
  • Published : 2000.10.01

Abstract

$Li_{0.44}MnO_2$cathode material has high reversibility during lithium insertion processes and is not easily damaged through over-charging or over-discharging. $Mn_2O_3$is often present as an impurity phase, and reduce the electrochemical capacity of electrode because this phase is electrochemically inert. Adding of excess NaOH reduced the $Mn_2O_3$to the content under undetectable by X-ray diffraction. Because the capacity can be increased in the cathode materials with larger unit cell, some of the manganese was replaced with titanium having larger ion size, and powders with the formula $Li_{0.44}T_{iy}Mn_{1-y}O_2$(where y = 0.11, 0.22, 0.33, 0.44, and 0.55) was synthesized and characterized. A maximum reversible capacity of 150 mAh/g was obtained for $Li/P(EO)_8$LiTFSI/$Li_{0.44}Ti_{0.22}Mn_{0.78}O_2$cells in electrochemical potential spectroscopy (ECPS) experiments. Cells with the titanium-doped manganese oxides exhibited a fade rate of 0.12 % or less per cycle.

$Li_{0.44}MnO_2$양극재료는 리튬의 삽입과정에서 높은 가역성을 가지며 과충전이나 과방전 과정에서 쉽게 손상되지 않는다. $Mn_2O_3$가 불순물로 자주 나타나며 전기화학적으로 비활성이기 때문에 전극의 전기화학적 용량을 감소시킨다. 잉여의 NaOH 첨가는 $Mn_2O_3$를 X선 회절에 검출되지 않는 정도로 낮추었다. 용량 증가는 큰 단위세포를 가지는 양극재료에서 얻어질 수 있으므로, 망간의 일부를 이온반경이 큰 티타니움으로 치환하였으며, $Li_{0.44}T_{iy}Mn_{1-y}O_2$(여기서 y = 0.11, 0.22, 0.33, 0.44, 0.55) 조성의 분말들을 합성하여 특성을 평가하였다. ECPS 실험결과 $Li/P(EO)_8$LiTFSI/$LixTi_{0.22}Mn_{0.78}O_2$전지에서 150 mAh/g 최대가역용량 값이 얻어졌다. 티타니움이 치환된 망간산화물을 사용한 전지는 충방전당 0.12 %나 그 이하의 용량감소율을 나타내었다.

Keywords

References

  1. J. Electrochem. Soc. v.137 no.769 T. Ohzuku;M. Kitagawa;T. Hirai
  2. J. Electrochem. Soc. v.140 no.3396 J. N. Reimers;E.W. Fuller;E. Rossen;J.R. Dahn
  3. Solid State Ionics v.84 no.1 R. Koksbang;J. Barker;H. Shi;M.Y. Saidi
  4. J. Electrochem. Soc. v.141 no.L145 M. M. Doeff;M.Y.Peng;Y.Ma;L.C. de Jonghe
  5. J. Electrochem. Soc. v.143 no.2507 M.M.Doeff;T.J. Richardson;L. Kepley
  6. J. Mater. Chem. v.8 no.255 A.R. Armstrong;H.Huang;R.A. Jennings;P.G. Bruce
  7. 19th Electrochem. Society Meeting v.98-2 no.Abstract No. 130 T.J. Richardson;P.N. Ross
  8. Acta Crystallogr. v.B24 no.1114 W.G. Mumme
  9. J. Electrochem. Soc. v.126 no.608 A.H. Thompson
  10. 196th Electrochem. Society Meeting v.99-2 no.Abstract No. 184 M.M. Doeff;K.T. Hwang;T.J. Richardson;L.C. de Jonghe
  11. J. Electrochem. Soc. v.126 no.2258 J. Wen;B.A. Boukamp;R.A. Huggins
  12. Prog. Solid St. Chem. v.17 no.145 C.A. Vincent