테이퍼 전송선 이론을 이용한 마이크로파 여파기 설계

Microwave Filter Design using Tapered Transmission Line Theory

  • 권진욱 (한양대학교 전파공학과) ;
  • 최형석 (한양대학교 전파공학과) ;
  • 장호성 (한양대학교 전파공학과)
  • 발행 : 2000.03.01

초록

본 논문에서는 선형화된 리카티(Riccati) 방정식에 후리에 변환을 적용하여 주파수 특성함수와 불균일 테이퍼 전송선상의 새로운 임피던스 분포를 구한다. 리카티 방정식을 선형화 함으로써 발생할 수 있는 오차를 보상하기 위해 임의의 Taylor 급수를 임피던스 항에 추가한다. 추가된 항은 불균일 전송선 양단의 임피던스 불연속을 제거하는 역할을 한다. 설계과정을 통해서 여파기의 과녁 주파수 특성에 접근해 가는 것을 축차법을 통해서 보이며, 위상함수의 역할을 예제를 통해서 보인다. 본 논문에서 제시한 설계법은 불균일 테이퍼 전송선의 설계에 뛰어난 융통성을 제공하므로, 임의의 주파수 대역특성을 만족시키는 여파기 및 임피던스 정합회로 설계에 응용할 수 있다.

In this paper, we derive a spectral function and a new impedance profile of non-uniform tapered transmission lines by applying the Fourier transform to a linearized Riccati equation. We compensate the error which is from a linearized Riccati equation by adding a Taylor series to the impedance profile. Added terms remove discontinuities In the impedance profile at both ends of the non-uniform section. We show that a calculated spectrum approaches to a target spectrum of filter by an iterative method and numerical examples are given to illustrate the role of the phase function. As the design method which is shown in present paper provides a excellent adaptability for the design of non-uniform tapered transmission lines, the present method can be applied to design filters and impedance matching circuits with various passband characteristics.

키워드

참고문헌

  1. R. Collin, Foundations for Microwave Engineering, McGraw-Hill, Chap. 5, 1992
  2. F. Bolinder, 'Fourier Transforms in the Theory of Inhomogeneous Transmission lines,' Proc. IRE, vol. 38, pp. 1354, 1950 https://doi.org/10.1109/JRPROC.1950.229496
  3. R. Klopfenstein, 'A Transmission line Taper of Improved Design,' Proc. IRE, vol. 44, pp. 31-35, Jan., 1956 https://doi.org/10.1109/JRPROC.1956.274847
  4. P. Pramanick and P. Bhartia, 'A Generalized Theory of Tapered Transmission Line Matching Transformers and Asymmetric Couplers Supporting Non-TEM Modes,' IEEE Trans. Microwave and Theory and Tech., vol. 37, pp. 1184-1191, Aug., 1989 https://doi.org/10.1109/22.31077
  5. S. Kim, H. Jwa and H. Chang, 'Design of Impedance Matching Circuits with Tapered Transmission Lines,' Microwave Opt. Technol. Lett, vol. 20, no. 6, pp. 403-407, Mar., 1999 https://doi.org/10.1002/(SICI)1098-2760(19990320)20:6<403::AID-MOP13>3.0.CO;2-E
  6. J. Mahon and R. Elliot, 'Tapered Transmission Lines with a Controlled Ripple Response,' IEEE Trans. Microwave and Theory and Tech, vol. 38, pp. 1415-1420, Oct., 1990 https://doi.org/10.1109/22.58679
  7. M. Loy, A. Perennec, S. Toutain, and L. Calvez, 'A New Design of Microwave Filters by Using Continuously Varying Transmission Lines,' IEEE MIT-S Digest, vol. 2, pp. 639-642, 1997 https://doi.org/10.1109/MWSYM.1997.602873
  8. P. Miazga, 'A New Method of Computer Aided Design of Non-Uniform Transmission Line Filters and Impedance Matching Circuits,' Asia-Pacific Microwave Conference, pp. 181-183, 1998
  9. L. Sossi, 'A Method for the Synthesis of Multilayer Dielectric Interference Coatings,' Izv Akad Nauk Est SSR Hz., Mat., vol. 23, no. 3, pp. 223-237, 1974
  10. P. Verly, J. Thbrowolski, W. Wild, and L. Burton, 'Synthesis of High Rejection Filters with the Fourier Transform Method,' Appl. Opt., vol. 28, no. 14, pp. 2864-2875, 1989
  11. D. Pozar, Microwave Engineering, John Wiley & Sons, p. 162, 1998