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ABSTRACT: On community data, sampled in regular intervals on a long-term basis, artificial
neural networks were implemented to extract information on characterizing patterns of
community changes. The Adaptive Resonance Theory and Kohonen Network were both utilized
in learning benthic macroinvertebrate communities in the Soktae Stream of the Suyong River
collected monthly for three years. Initially, by regarding each monthly collection as a separate
sample unit, communities were grouped into similar patterns after training with the networks.
_ Subsequently, changes in communities in a sequence of samplings (e.g., two-month, four-month,
etc.) were given as input to the networks. After training, it was possible to recognize new data
set in line with the sampling procedure. Through the comparative study on benthic macroin-
vertebrates with these learning processes, patterns of community changes in chironomids
diverged while those of the total benthic macro-invertebrates tended to be more stable.

key Words: Adaptive Resonance Theory, Artificial neural network, Benthic macroinvertebrates,
Chironomids, Kohonen network, Patterning community changes.

INTRODUCTION

Verifying ecological data from long-term
surveys is important in ecosystem management.
For fulfilling the goal of sustained management
of ecosystems, a steady and consistent sampling
under a well-defined survey planning is necessary,
and this should be followed by an effective
analysis. Classification or patterning of collected
data is the first step in characterizing the
ecological status of target communities on
long-term data. Data for ecosystem or community
samplings, however, usually consist of multi-
variables and are generally difficult to analyze
since it is complex, varying in locations and
times. Traditionally, multivariate analyses have
been used to analyze ecological data, and there
have been numerous classifications of communities
through conventional multivariate analyses (e.g.,
Legendre and Legendre 1987, Ludwig and
Reynolds 1988, Quin et al 1991). The application
of these conventional methods, however, are
generally limited to linear data (Ludwig and
Reynolds 1988).

In terms of patterning community changes,
even fewer studies have been conducted: they
were mostly classified in static terms, not in
dynamic terms. Legendre et al (1985) and
Legendre (1987) discuss classifying communities
in temporal domain utilizing ordination and

segmentation techniques in multivariate data
series. Turchin and Taylor (1992) review time
series analysis in analyzing dynamic data for
populations. Patterning temporal development of
community, however, has been an important
topic in ecosysiem management in the long-term
data. Especially in aquatic ecosystems, communities
are vulnerable to various disturbances caused by
natural and anthropogenic agents, and sub-
sequently develop in a characteristic manner in
response to disturbances as time proceeds
(Sladecek 1979, Hellawell 1986). Patterning these
changes in communities would be important in
monitoring ecological status of the target
ecosystem. The long-term survey on the on-time
analyses is necessary for characterizing 'changes’
in communities. It is helpful for predicting the
future development of the community, for
monitoring water quality and risk assessment,
and for developing strategic tools for the
sustained management of aquatic ecosystems.
Recently, artificial neural networks have been
noted for their efficacy in patterning nonlinear
data. They are information-processing systems
that autonomously develop operational capabilities
in adaptive response to an information en-
vironment (Hecht-Nielsen 1990). The networks
have been effectively used for pattern
recognition in the various fields of electronics
and computer sciences, and have been recently
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applied to other fields (e.g., Lohninger and
Stancl 1992, Melssen et al 1993). In ecology,
artificial neural networks have been mainly
implemented in classifying groups (e.g., Chon et
al. 1996, Levine et al, 1996), patterning complex
relationships (e.g., Lek et al 1996, Huntingford
and Cox 1996, Tuma et al 1996) and predicting
population developments (e.g., Elizondo et al
1994, Tan and Smeins 1996). Chon et al. (1996)
utilizes the Kohonen network to classify community
data. There has been a focus on dynamic neural
networks for patterning spatio-temporal data in
electronics and computer sciences (e.g., Kung
1993, Giles et al 1994). To extrapolate the
previous community classification in a static
manner (Chon et al. 1996), we devised a simple
method to pattern the changes in communities
by utilizing two unsupervised learning networks
in combination (Chon et al 2000). To verify the
sustainability in patterning community changes
by this method, a comparative study was conducted
on the total invertebrates and chironomids. The
consistency and variability were observed as
sampling interval was increased to recognize
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new data sets, as well as to assist in biological
interpretation on the development of polluted
communities.

METHODS

Network process

Initially, all of the community data for one
-time sampling were trained by ART (Fig. 1).
Weights, &; (0), were initialized with some small
numbers between the output node ; and the
input node :. Density of an important taxa, x;,
was given to the network. Then, the distance,
d;(t), was calculated for each output node, ;, as

the following (Pao 1989):
7
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where n is the number of input nodes

Among the calculated distances, the node ;
which has the shortest distance, &;(¢), is sele-
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Fig. 1. A flowchart for training community changes with a combined use of two unsupervised learning algorithms, the
Adaptive Resonanace Theory (ART) and the Kohonen network (Chon et al. 2000).
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cted as ;°. If d&;°(¢) is smaller than p, which is

the threshold parameter in determining vigi-
lance, the input is assigned to the output node

j°, then &;(¢) is updated as the following:

1
b/'l(t)“}' C_I_l.x,‘

b (14 1)= cj_l

where ¢ is the number of sample units classi-
fied to node ;. If d;"(¢) is larger than o, the

input is assigned to a new output, and its weight
bj=i(t) is assigned as shown below:

bi'i (t"l"l):x,

Weights produced by ART preserved confor-
mational characteristics of the input data for
each sampling time through training (Zurada
1992). Subsequently, weights trained for one
month in ART were combined sequentially to be
given to the Kohonen Network as inputs for the
sampling times in m-2, m-1, and m, if it was
considered as a three-month sampling (Fig. 1).
In the Kohonen Network, M® neurons were used
for output, which could be determined empir-
ically based on the neurons, efficiency of conver-
gence and their sensitivity to the discrimination
among patterns. In this case, a two-dimension
array of 9 by 9 neurons was used. The weights in
the Kohonen Network were represented as
Wy mp (). Similar to ART, the weights were

randomly assigned with small values. When the
input vector was sent through the network, each
output neuron, k, computed the total distance,
d,(t), between the input vector and the weights
as shown below:

dk(t)z 20 ZO [bjti (t)—' Wk, (mjsi) (t)]z

The neuron, the weight vector of which has
the shortest distance to the input vector, was
chosen to be the winning neuron. The winning
and its neighboring neurons were allowed to
learn by changing the weights, in a manner as to
further reduce the distance between the weight
and the input vector as follows:

W g iy (£ H 1) =
W g my (8 F 9 () (B s — Wi ity (ENZ

Z (i 1s assigned "1" for the winning and its

neighbor neurons while the rest of the neurons
are assigned "0". 7 (t) (e.g. 0.1~0.4) denotes the
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fractional increment of correction. Detailed
algorithm in the Kohonen Network, including the
determination of the neighbor neurons, could be
referred to Kohonen (1989), Hecht-Nielsen (1990),
Zurada (1992) and Chon et al (1996). After the
training was completed, newly collected data for
community changes could be given to the
trained network for recognition. Then, the new
data was given to ART and the weights were
updated subsequently. The updated weights were
then arranged sequentially for a given period,
and were given to the trained Kohonen network
for recognition. This made it possible to pattern
the community changes on the on-time basis as
the sampling proceeded.

Field data

The benthic macroinvertebrate communities
were collected monthly in the Soktae stream in
the Suyong river from March 1992 to April 1995
(Fig. 2). A wide range of organic pollution was
observed at the study sites from oligosaprobity
to polysaprobity. Community compositions varied
correspondingly to the biological index, TBI
(Trent Biotic Index: Woodiwiss 1964) and BOD
(Fig. 2). Additional ecological information for
benthic macroinvertebrates in the Suyong river
is also reported elsewhere (Kang et al 1995,
Yoon and Chon 1999).

The total number of species collected at the
sample sites was 132. Species were grouped into
seven selected taxa (Gastropoda, Oligochaeta,

Soktae
Stream

27° =
4 ’ ’1"
;:2
4\
N
i
Soklae(
Straam |
P Suyong__:-
: . é Stream d .J
Suyong i L_ p-mesosaprobity a5 - bt
River | : polysaprobity ®Mﬂ> “
n isosaprobity hzze = s

Fig. 2. The sample sites for collecting benthic macroinver-
tebrates in the Soktae stream, Suyong River in Korea from
March 1992 to April 1995. TSD, TKC, THP and TCL
represent the names of sample sites, Sadeungkol, Kochon,
Hapansong and Chungli, respectively (modified from Chon
et al 1996). .
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Trichoptera, Ephemeroptera, Odonata, Diptera
(except Chironomidae)., and Chironomidae) in
order to represent the overall ecological status
of the sampling sites, as well as to eliminate
noise effects due to species that rarely appear at
low densities. Chironomids. consisting of many
species and known independently to represent
water quality (Chon et al 1996), were compared
with the total benthic macroinvertebrates. Am-
ong the 48 species of collected chironomids, the
following four most abundant and characteristic
species were selected: Chironomus flaviplumus.
Orthocladius suspensus, Cricotopus sp. 1. Ortho-
cladius sp. 2. Chironomus flaviplumus and Ortho-
cladius sp. 2 are known to be collected at highly
polluted sites of poly-saprobity, while Orthocla-
dius suspensus, and Cricotopus sp. 1 are obser-
ved at the polluted sites of «-mesosaprobity
(Chon et al. 1996). Fig. 3 shows the community
dynamics of the two %roups. Densities (number
of individuals per m®) in each selected taxa
during the study period were provided as inputs
for trainring with the ART as previously
explained. Collected data from March, 1992 to
February, 1994 was given as inputs for training
in the total invertebrates. Due to the time
required for classification and specimen handling,
samplings in a shorter period of from March,
1992 to August 1993 were used for training in
chironomids. Community data of the rest months
.after February, 1994 were used for recognition in
the total invertebrates, while samplings for six
months after August, 1993 were used for
recognition in chironomids. For the convenience
of calculation time at PC level, as well as for
feasibility in predicting water quality in a short
term in the field, a period of four months was
selected as the training period in representing
the community changes.

TRAINING AND RECOGNITION

Patterning one-month samples

The input data, regarding each monthly col-
lection as a separate sample unit, was provided
to the networks to produce the final map after
the training by the Kohonen network. Patterns
of communities of the total benthic macro-
invertebrates on the map reflected impacts from
the pollution (Fig. 4a). Being separated from the
other less-polluted sites, a large number of
communities collected from highly polluted sites
of TCL and THP (see Fig. 1) formed a large
group on Neuron (1; X axis, 5: y axis) (Group A).
At these sample sites, Oligochaetes dominated by
Limnodrilus hoffmeisteri and chironomids mainly
consisting of Chironomus flaviplumus were highly
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Fig. 3. Monthly changes in densities (log number of indiv-
iduals per m°) in selected taxa of benthic macroinver-
tebrates (a) and chironomids (b), which were collected in
the Soktae stream, Suyong River in Korea from March
1992 to April 1995. Arrow represents the time when
recognition was started.
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abundant. These two species are considered to
be indicators for organic pollution (Brinkhurst
1974, Andersson et al. 1978, Yoon and Chon 1996,
1999).

A large number of samples, mostly from a rel-
atively clean site of TSD, formed another large
group on Neuron (8,1) (Group B). In this group,
densities tended to be evenly high in all taxa,
refiecting high diversity in communities. The
other small groups were formed on Neuron (2,0)
{(Group C) and Neuron (0,8) (Group D). Group C
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represented the communities in low densities,
mainly collected from TSD and TKC. In this
case, densities were generally low due to envir-
onmental disturbance of flooding. Group D
patterned communities from an intermediately
polluted site TKC, where diversity was in an
intermediate level and neither chironomids nor
oligochaetes were present.

The mapping of chironomid communities was
somewhat similar to that of the selected benthic
macroinvertebrates (Fig. 4b). Groups A and B
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Fig. 4. One-month mapping of the benthic macroinvertebrate communities, collected from the Soktae Stream, Suyong River
when trained by artificial neural networks. The names of sample sites are abbreviated with the following: D:TSD, C:TKC,
P:THP, L:TCL. Letter-number combination represents the sample site, the year and the month of when a sample was
collected, respectively. For example, L2-5 means the sample collected at TCL in May, 1992. The name of sample sites with
asterisk mark represents that the community was recognized by the trained networks. a) Pattern of the one-month in the

total macroinvertebrates in the Soktae Stream.
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- Fig. 4. (Contionued) b) Pattern of the one-month in chironomids in the Soktae Stream.

appeared in the mapping of chironomids on
Neuron (6,0) and Neuron (0,0), respectively.
Groups C and D were also formed on Neuron
(0,3) and Neuron (8,7), respectively. However,
many communities except Group A scattered to
other neurons in the mapping of chironomids.

Patterning community changes

In the two-month mapping, the main features
found in the one-month mapping were also
observed. The total benthic macroinvertebrates
showed similar characteristics as the results
observed from the one-month sampling (Fig.
5a), which is the following: grouping was mainly
based on the pollution impacts and patterns
generally persisted in the longer-time mappings.
Group A. to which a large number of samples
from polluted sites of TCL and THP belonged in
the one-month mapping, appeared in the two
-month mapping on the Neuron (23). Group B,
representing communities from a relatively clean
site from TSD, and Group D, consisting of
communities mainly from TKC, were formed on
the Neuron (7,0) and Neuron (4,6), respectively.

In Group D, however, about half of communities
which originally belonged to Group D in the
one-month mapping, remained in the two-month
mapping. It did not form as large of a group as
the one shown in the one-month mapping. Group
C was disintegrated and was not identifiable.
This disappearance of Group C indicated that
the low densities in communities in the one-
month sampling may not be a consistent
character istic in the community organizations
while Groups A and B were persistent in the
two-month mapping. The longer observations of
Groups A and B continuously showed similar
results as shown in the four-month mapping, while
the other groups were not observable (Fig. 6a).

The chironomid communities tended to diver-
ge more in the longer-period mappings than in
the one-month mapping. Group A was still-
formed in the two-month mapping on Neuron
(7,4) (Fig 5b). Communities belonging to Group
A were divided into the two Neurons, (6,2) and
(7,3) in the four-month mapping, but they were
very close on the map, indicating that these
groups generally formed similar patterns. In
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Fig. 5. Two month mapping of benthic macroinvertebrate communities, collected in the Soktae stream, Suyong River when
trained by artificial neural networks (The name of sample sites listed in the map was explained in Fig 4.). a) Pattern of the
two-month in the total macroinvertebrates in Soktae Stream.

contrast, the communities that belonged to
Groups B, C and D in the one-month mapping
scattered on the map and were not identifiable.
Especially, the disintegration of Groups C and D
are significant. since chironomids were generally
found in high densities in these groups, which
indicates that the community changes in chiron-
omids are highly diverging.

Some communities that diverged from Group
A formed a new group on Neuron (0,6) in the
two-month mapping of chironomids (Fig. 5b:
Group E). This group generally represented a
recovery from the flood. This new grouping was
not found in the mapping of the total com-

munity. This trend, the formation of a new
Group E, persisted until the four-month map-
ping on Neuron (0.3) (Fig. 6b).

Recognition

The process of recognition was begun by fee-
ding the new input data into the trained net-
works in the total and chironomid communi-
ties. The commaunities collected after February,
1994 for the total invertebrates, and those
collected after August, 1993 for the chironomids
(see Fig. 3), were provided as new data sets,
respectively. The recognition results appeared
on the trained mapping. Communities recognized
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Fig. 5. (Contionued) b) Pattern of the two-month in chironomids in Soktae Stream.

by the networks were so indicated with the **”
mark (Figs. 4-6). The recognized groups
generally shared similar characteristics with the
patterned groups, both in the total and
chironomid communities. In the one-month and
longer-period mappings a large number of new
communities collected from TSD were patterned
to Group B. Also, communities that were
collected from the polluted site, THP, and some
of communities from TCL, were grouped into
Group A. Communities from the intermediate
polluted site, TKC, were generally unstable; if
they formed groups, they belonged mostly to
Groups B and D, and some communities tended
not to belong to any patterned groups. This
recognition trend appeared in the longer-period
mappings also. These unstabilities appeared
more strongly in chironomids.

In the one-month mapping of the total com-
munities (Fig. 4a), however, a group of new
communities of THP and TCL were unexpectedly
recognized to a Neuron (7,0). On Neuron (7,0), a
sample from TSD (D3-9, Fig. 4a) was originally
patterned. This exceptional recognition was in
fact due to similarity in community abundance

between the trained and recognized data.
Although the sample “D3-9” was collected from
the relatively clean site TSD, communities were
exceptionally concentrated on Diptera and Chiro-
nomidae with low diversities. Recognized data
from THP and TCL also highly consisted of
Diptera and Chironomidae.

DISCUSSION AND CONCLUSIONS

With the combined use of the two unsuper-
vised neural networks, it was possible to pattern
the temporal variations in community data.
Feasibility of neural network in the feature
extraction on temporal data was demonstrated
in this comparative study on community changes,
indicating that artificial neural networks could
be used for comprehensive understanding of
community dynamics in a reduced dimension.

This study also showed some possible pattern
recognition on the on-time basis in the long-
time survey of an ecological data. As previously
shown, after training with the previous data sets,
a new data set could be easily fed into the
trained network to be able to determine the
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Fig. 6. Four month mapping of benthic macroinvertebrate communities collected in the Soktae Stream, Suyong River when
trained by artificial neural networks. a) Pattern of the four-month in the total macroinvertebrates in the Soktae Stream. b)
Pattern of the four-month in chironomids in the Soktae Stream.

pattern of the in-coming data. The training
process could be effectively conducted whenever
data were sufficiently accumulated or field eco-
logists decided to do so. These advantages in
pattern recognition by artificial neural networks

could be effectively used for the long-term ecol-
ogical survey where the assessment on the com-
munity development was necessary in line with
the sampling procedure. Through the traditional
clustering analyses, the classification of comm-
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unities may be conducted, however pattern rec-
ognition is generally not possible.

The mapping by the trained network reflected
environmental effects when sampling sites were
exposed to pollutants. This confirmed the results
of groupings by artificial neural networks from a
previous study (Chon et al 1996). where com-
munities were patterned according to the level
of their response to pollution effect as the levels
of disturbances were high.

It was observed in this study, that Group A,
which represented the communities from highly
polluted sites, persisted in the total and
chironomid communities, as well as in the
one-month and the longer-period mappings. This
indicated that benthic macroinvertebrates maintain
a strong persistent characteristic pattern in
community changes at polluted sites. This could
be an effective information in assessing water
quality as well as to the interpretation of
ecological status of stream ecosystems. In Group
A, the Chironomus flaviplumus in Chironomidae
was consistently dominant and therefore this was
the basis for its consistency that was observed
both in the total benthic invertebrates and in
the chironomids (Fig. 4).

It was noted that the number of communities
belonging to Group B was lower in the mapping
of chironomids (Fig. 4b) than in that of the total
communities (Fig. 4a). This may be due to the
limited selection of species in chironomids for
patterning. As previously mentioned, 4 species
were selected in chironomids, representing the
a -mesosaprobity and the poly-saprobity. How-
ever, the species which could represent clean or
relatively clean state such as in TSD, could not
be selected in chironimids, due to the scarcity in
specimen collections. In the total community,
Epemeroptera, Odonata and other Diptera were
included in contrast. This proposes an improve-
ment in collection of chironomids in this
comparative study for patterning community
changes. In order to use chironomids as
patterning community and to span the whole
spectrum of water quality, it might be desirable
to add sample collections where chironomid
species indicating clean water would Dbe
abundant.

In Group B of the one-month mapping, alth-
ough species from clean sites were not included,
chironomid communities were more character-
istic to represent environmental disturbances.
Communities were selectively grouped from TSD
and TKC in July and August when flooding
occurred, or during the period from December
to February when the temperature was very low.
In Group D, chironomid communities also homo-
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geneously represented the community character-
istics of the one-month mapping more than in
the total communities. In these samples,
Chironomus  flaviplumus  and Orthocladius
suspensus appeared at the same time in a
characteristic manner except in some com-
munities of TSD. These facts indicated that the
chironomid community patterning could serve as
an alternative in comprehensive understanding
of water quality.

In the one-month mapping (Fig. 4b), a
chironomid, Orthocladius suspensus, played a key
role in characterizing Group C in the mapping of
chironomids. This species indicated the water
quality of «@-mesosaprobity and frequently
appeared in the samples from the intermediately
polluted, site, TKC, and at other samples from
TSD. The disintegration of Groups C in the
longer-period mappings was characteristic in
chironomids while these groups persisted in the
total communities (Fig. 5 and Fig. 6). In Group
C, community abundance was generally low at
all taxa in the one-month mapping. In the
two-month or the longer-period samplings, high
density was subsequently observed in the
following months in chironomids while low
densities were maintained at the other taxa. This
caused the divergence of the Group C in
chironomids.

With a similar reasoning, Group D also diver-
ged in the mapping of the longer-period in .
chironomid communities. In Group D, Chiron-
omidae, Gastropoda and Odonata were generally
abundant in the total communities. However,
community abundance was diversified the most
in chironomids in the following months. This
divergence may be due to different life cycles of
abundant chironomids. Many reviews indicated
that the life cycles of the different species of
chironomids are dependent upon temperature
(e.g., Huryn 1990, Commins 1979, Graham and
Burns 1983, Edward 1986). Since the summer
water temperature in Korea generally exceeds
14°C, above which the development of chiro-
nomid nymphs may be accelerated to a certain
point (Storey 1987), the period of a complete life
cycle  would be shortened in  different
temperatures in different species. In this study,
chironomids that were in immature stage were
sampled in representing community size.

Some communities that diverged from Group
A formed a new group. E, with other communities
on Neuron (0,6) in the two-month mapping of
chironomids. These communities represented a
recovery from flooding. In the first month,
densities were generally low due to flooding
while in the following month chironomids were
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in high densities. This new grouping was not
found in the mapping of the total community,
which suggests that chironomids may be ap-
propriate in patterning community changes
during recoveries after flooding. Chironomids
are known to be sensitive to flooding as well as
to recover quickly after flooding (Storey 1987,
Saether 1979).

As previously mentioned new\9 input data
generally shared with similar characteristics to
the patterned groups in recognition. This verified
artificlal neural networks could effectively
extracted information of community data. In the
one-month mapping of the total communities as
previously mentioned, however, a group of com-
munities of THP and TCL were unexpectedly
recognized to a Neuron (7,0), where a sample
from TSD was originally patterned (Fig. 4a).
This shows that a longer period may be required
for training. If the training period is extended to
that of recognition, the community composition
concentrated on Diptera and Chironomidae
would in fact become a new pattern representing
communities from the polluted sites based on
these recognition results. The training process in
the extended period could be readily conducted
as previously mentioned. In group A, which is a
large group representing polluted sites, oligochaets
were additionally abundant. The community
difference in benthic macroinvertebrates in
ecological aspect will be discussed elsewhere in
detail.

As mentioned in Chon et al (1996), a problem
of objectivity existed in the neural networks
since the network was based on random effects
and iteractive calculations: each configuration
after convergence may have been different with
different trainings. In this case, neurons repre-
senting the same group appeared differently in
different training periods. This is a problem for
comparing community patterns of different
sampling periods. In the future, it would be
desirable to improve artificial neural networks
for more comprehensive understanding of data
for community changes.

As a summary, the combined use of un-
supervised artificial neural networks was
effective in patterning community changes. This
method could be utilized for assessing ecological
status of aquatic ecosystem in concurrence with
long term survey. Through the comparative
study on benthic macroinvertebrates with the
learning processes, patterns of commnity changes
in chironomids were shown to be diverging and
more sensitive to the impacts of internal or
external factors, while those of benthic macro-
invertebrates in total appeared to be more
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persistent.
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