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The Finite Element Formulation and lts Classification of Dynamic
Thermoelastic Problems of Solids
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Abstract

This paper is for the first essential study on the development of unified finite element formulations
for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of
formulations, the finite element method is based on the introduction of a new quantity defined as heat
displacement, which allows the heat conduction equations to be written in a form equivalent to the
equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The
equations obtained are used to express a variational formulation which, together with the concept of
generalized coordinates, yields a set of differential equations with the time as an independent variable.
Using the Laplace transform, the resulting finite element equations are described in the transform
domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived
in the first part and the equations of motions and their corresponding boundary conditions, which is
referred to the transformed equation. Selections of interpolation functions dependent on only the space
variable and an application of the weighted residual method to the coupled equation result in the
necessary finite element matrices in the transformed domain. Finally, to prove the validity of two
approaches, a comparison with one finite element equation and the other is made term by term.

Keywords @ thermal elasticity, structural dynamics, transfinite element method, variational approach,
weighted residual approach, laplace transform, numerical inversion
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1. Introduction
1.1 The Conventional Approach

The thermal and structural modeling and
their analyses are of practical importance to
structural engineers concerned with problems
related to temperature-induced displacements
and the associated structural dynamic response.
The basic theory for thermoelastic problems
has been well established, as in the case of
heat conduction, and analytical methods present
difficulties for bodies of complex structural
configurations or under complicated boundary

" In the existing variational for-

conditions.’
mulations equations of coupled thermoela-
sticity are treated as two separate equations
with coupling terms appearing explicitly in

the heat conduction equation.

1.2 Formulations of Coupled Thermoel-
astic Equations

By using definitions on mechanical quantities,
heat displacement and heat strain,?® the
equation of coupled thermoelasticity is written
in such a form that the equation of motion for
mechanics and the equation of equilibrium
for the heat conduction are equivalent, with
the coupling term appearing explicitly in the
constitutive relations. Such formulations are
appropriate since the behavior of a material
is expressed through its constitutive relations,
but not through the equation of motion nor
equilibrium. A variational equation is next
derived in the use of generalized coordinates
and thus leads to a unified equation for the
general case of coupled thermoelasticity.4)
Accordingly, it can be used for deriving a finite
element formulation for thermoelasticity problems.

1.3 Transfinite Formulations

Based on the variational approach, the
thermal and structural finite element for-
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mulation for an inves{igation of the transient
thermal and structural response are quite
complex and very time-consuming for several
reasons, principally the time-dependent nature
of the problem. This fact is especially true
when analyzing large complex structural
configurations due to thermal effects, which
require analyses to be carried out for a long
duration, thereby escalating computational
times and analysis cost. Furthermore, these
analyses require step-by-step time-marching
algorithms and estimations of time step.

In view of these conditions, the introduction
of an effective methodology, referred as ‘the
transform finite element method,” will be
presented and is a viable alternative to
existing techniques.” The Laplace transform
finite element methodology and the Fourier
transform finite element methodology are
typical classifications of finite element for-
mulations in the corresponding transformed
domains. Such formulations are referred to
as ‘transfinite formulations,” and the corre-
sponding finite elements are referred to as
‘transfinite elements.” Although the associ-
ated study has focused on the simple problems,
linear uncoupled cases, of structural or thermal
dynamics, research currently under way has
some difficulties in applying to nonlinear
problems and cases for wvarious kinds of
thermal excitations.”"”

A unique feature of the approach is the
use of a common numerical methodology for
each of the interdisciplinary areas, for example,
thermal and structural areas, via transform
methods in conjunction with the conventional
finite element formulation such as a weighted
residual scheme.®’ The region under consider-
ation is first idealized as a finite number of
discrete elements for both the thermal and
structural models. Therein, numerical com-
putations for each element in the transform



domain yield element matrices which are
subsequently assembled in the conventional
manner and then solved in the transform
domain itself. To obtain the structural res-
ponse due to thermal considerations, the solution
is numerically inverted only in the final
structural formulations at desired times of
interest.” Recent work concentrates on the
improvements of numerical stabilities and
accuracies for the real time responses in the
transformed domain.'®*

The dynamic finite element equations obtained
by a variational principle are converted to
the transfinite formulation via the Laplace
transform to check if that formulation makes
the exact agreement in comparison with the
resulting finite element equations from the
transform finite element method. Accordingly,
this paper will describe a detailed development
of the unified finite element formulation for
the thermal and structural dynamics as the
first indispensable step to solve thermal
elastics problems of solids.

2. New Concept on Thermoelasticity

2.1 Heat Displacement and Heat Strain

First, consider an elastic medium subjected
to pure heating. The medium is initially at a
state of uniform temperature To(x;), where x;
is the Cartesian coordinate of a material
particle and 7T, the reference temperature. A
dimensionless temperature change 6 (x;.t) is
denoted as

_ 1
9= TO(T— T,). (1

where T(x;,t) is the instantaneous temper-
ature of the particle and ¢ the time.'? The
heat conduction equation with a heat source

4o
ox
‘q,

@ in a continuum has the form
R Y
t 7 0

where Kyi=K; is the thermal conductivity
tensor, o the constant mass density, ¢. the
specific heat at constant volume of material
and Q(x;,t) the heat energy per unit volume.
The heat displacement is defined as a vector
field Hi(x;,t)

6= L=H,, . (3)

The vector field Hi has the dimension of
displacement and equation (3) resembles the
definition of a mechanical volume strain.

2.2 Heat Stress and Alternate Heat
Equation

For a reversible process without mechanical
deformation, the change in specific entropy

.. 1
is given by »

T ¢, dT _
As:f’rﬂ—T_ c, H;,; . (4)

A quantity o, the heat stress, is introduced
by

o=pc, T,0=p T,ds . (5)

The heat conduction can be written in the
following form:

E K; 05 Q _ 9° H,
6‘x,-(pc,, T, ax]»)+ T, °¢ ax0t
(6)

In addition, a vector field Si(x;,t) in terms of
heat energy @ is introduced by

ATMMTRTEE =22 H13¥ M13(2000.3) 39



Equation (6) becomes

FL4Cay = CF T, 270, (8)
where A;=(K;)"' is the thermal resistivity
tensor and C= pec, the heat capacity per unit
volume. Note that equation (8) is similar to
the mechanical equation of motion with body
force except that the variation of heat stress
yields a diffusion effect instead of an inertia
effect. This alternate formulation of a thermal
process behaves itself like a damped mecha-
nical system with the negligible mass inertia.
The quantity CA4sS: occupies an equivalent
position of a mechanical body force.

2.3 Coupled Thermoelastic Equation

To extend the concept of heat displacement
to the formulation of coupled thermoelastic
problems, the total mechanical strain ey is
represented by the sum of the strain e
caused by mechanical forces and the strain
ey’ by thermal expansion

ei;‘Z%( Uyt Upy= e+ ey’ (9)

If egTis written explicitly in terms of &, the
mechanical strain eUMis expressed by

eiiMz“%( Ui+ U;0—Bu T, ( Cium) “lg
(10)
and Bi= aw Ciu, (1D

where Ui(x;,t) is the mechanical displacement
vector, Ay the thermal moduli, @ the aniso-
tropic coefficients of thermal expansion, and
Cii the elastic constants of the material.
The mechanical stress-strain relationship has
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the following form:

0;= Ciuw en”= Cuueu— By T.0. (12)

Together with mechanical deformations, the
change in specific entropy for small temperature
variation should also be redefined. It can be
obtained from the energy equation followed by

As= c,,8+—-§i;“ei. (13)

Accordingly, the heat displacement vector
Hi(x;,t) is redefined to include effects due to
mechanical deformation

H, =0+ —Lisi, (14)

Compared to the equation (10), the above
Hi; can be interpreted as the total heat
strain and AZye;/C as the strain induced by
the mechanical deformation. The associated
heat stress becomes

5=CT,0=CT,H,;— T, B; e;- (15)

The second term T,4&pey in equation (15)
represents a thermomechanical coupling effect.

An analysis including both the thermal
expansion and the coupling term in equation
(10) is usually referred as the coupled ther-
moelasticity. If only the thermal expansions are
considered, while neglecting the effect of ther
momechanical coupling, the analysis is then
an uncoupled thermoelastic problem. Equations
of motion and heat conduction are

pU;= 0;;+ B, (16)
and C T, A; H=70,+CA; S, (17)
where ( *) is the derivative with respect to time

¢, B; the body force tensor and S; the tensor
field defined in equation (7).Y Equations (16)



and (17) have similar formulation forms. Thus,
it is possible to formulate a unified variational
equation which treats both the heat displace-
ment and the mechanical displacement as
elements of a generalized displacement vector.

2.4 The Variational Approach

Consider a variation & U; of the mechanical
displacement U; with a correspending vari-
ation of strain Jey and a variation J&H; of
the heat displacement H; with a corresponding
variation of heat strain 6 . A variational
form of equations of motion and heat con-
duction has the form

fg( O','j‘,‘+ B,“‘P U,)5 U,dQ
+fg,( 54 CA; S;— CE T, A, H)SH,do=0,
(18)

where £, is a control volume. Employing the
divergence theorem, the first term in equation
(18) becomes

f_g ( O','j,/‘f‘ B,'_p Ul)é‘ UZIZ’.Q:
—fp o U6 U,do— fg o0 e;d2  (19)
+ [, 0y n;8 Udr+ [, BisU.ae,

where n; is the outward unit normal vector

of the control surface /7. Similarly, the second

integral term in equation (18) becomes'?

fgn (G.4+CR5S,— C> Ty, H)6H,do=
—[. c*T, A, HioH.d0
2,
- fg C T,080d2
_fg,, T, 8,06 ¢ ,d2+ ananaH,-dF

+ [, Cay S,6H a0
(20)

o
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2.5 Energy Functions

The total energy function W is expressed
as the product of stress and strain, then the
function satisfies

Wz_é 0 e,—ﬁ-%%ﬁ. (21)

Alternately, writing W in terms of strain by
substituting equations (12) and (15) into
(21) yield

W=A% C,yk/ € ek,+%c To (92. (22)

The potential function V defined by
v== (c, CT, 09d2, (23)
- 2 2, ikl € jj ekl+ o )

which for isothermal deformation(8 =0) has
the physical meaning of a strain energy
function, and for zero strain it reduces to a
thermal potential. Taking the first variation
of equation (23) yields

V= fg Cin €56 e ydQ+ fg C T,06d2. (24)

Hence, equations (19) and (20) are substituted
into equation (18) and then equation (24) is
used in the resulting equation(18) to give

fQﬂp U8 Ud2+ fgw C? T, A; H;6 H,do+8V

= [ Coyn8 Uit o8 Hdr

+ [, (B U+Cay ;5 Hae.
(25)
Then, the equation (25) can be used as a

variational form for coupled thermoelasticity
problems.

SIERATATSE =28 M133E M15(2000.3) 4]



-4
BX
ol
18
.L?ii
|
ng
v
o
_El)_{:
e
ox
sl
=)
fo,
Hdo
st
ko
2
o
A
o
e
A
E i

2.6 Generalized Coordinates and Lagran-
gian Equations

An advantage of introductions of gener-
alized coordinates into the variational principle
has been well discussed in the classical
mechanics. As an example of their appli-
cations, nodal displacements or nodal rotations
may be regarded as generalized coordinates
in the variation formulation of the finite ele-
ment analysis. Mechanical and heat displace-
ments can be represented by the following
forms, respectively:

U, =U;(qy.e., @n, x4, D,

H,‘ = H,( d1seees ns x,',t), Z‘=1,2,3,
(26a, b)

which are given functions of three space
coordinates x;'s, time ¢ and n parameters
q/s.5> Parameters are unknown functions of
time and will be considered as the gener-
alized coordinates.

Then, variations of the field U;, H; and V

with respect to generalized coordinates g's

(j=1, -, n) are of forms
U, 3 H,
SU= G o as SH= g 8a,
ov=-"2r6q; i=1.23.
(27a, b, ¢

Generalized forces F; and @ have the following
forms from right hand side terms in equation
(25), respectively:

U,
Fiaqi:[f["( [ aq]_-!—dn,v

3 H,
Te )dr]aq,»,

(28)

Qua=[ [, ¢

i

(29)
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e

]Sq,.

By using the procedure of Lagrangian mechanics,
the first term in equation (25) can be written
in terms of the kinetic energy functions as
follows:

0 Ui 5 4.do. (30)

fpuaUd.Q f P UG,

From the next characteristics of the differential

calculus,
LU, g _ g d 9U;
a U U, % U
q;
(31)
the kinematic energy expressed as
=1 [ o U Uae, (32)
and the equation (30) becomes
7 oK \ aK
fgnpU,»aU,-d.Q [ () o as.
(33)

Similarly, if the relation, 0 H;/ 8 ¢,= 8 H;/ 4 q,,

is utilized, then the second term in equation
(25)

__oD 9 H

D=2 aqk—fgncz T, A; H> o qudQ

(34)

here D=~ [ C* 1, H, (35)
where D= fg”c T, A, H; H,do.

Together with 8V=(4V/3 ¢;)8 ¢q;, substituting
equations (28), (29), (33) and (34) into equa-
tion (25) yields
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oD
8q,-

oV
24q;

+ +

d, K \_ oK .
dt(a‘) Sq,;

daq;
‘ (36)

=(F;+ Q)%q;

The equation (36) represents the Lagrangian
equation of the thermoelastic problem. It
constitutes a system of n differential equ-
ations corresponding to n generalized coordi-
nates g(t)’s.

2.7 A Finite Element Approach to the
Variational Equation

Consider a special case in which displace-

ments can be represented by a linear combi- -

nation of the generalized coordinates,

Ul x, 0= 2141‘(0 falx),

=

Hi(x, D= 2 p:() ga(x), (37a, b)

where pi(t) and qi(t) are n generalized coor-
dinates, fix(x) and wgx(x) are interpolation
functions(i=1, -, n, k=1=1, 2, 3), respec-
tively, therefore equation (37a, b) may be
viewed as a general form of finite element
formulation. Corresponding strains are

ekl:% il fat Fur).

0= p; gik,k_% en . (38a, b)

The potential energy function V can then be
written expressed as

V=—% a;q:4;,— bya; 17;""_% ci bi 05, (39)
where
T,
a;= a;= Tifﬂ,,( Cijk[‘f'—c ﬁ/el an)

(Faot Fud Fimnt Finm)d2,

(40)

b,-,~=% IQ" To Bul fart fur) &mmd2, (41)
Ci= C;i= f.onc Ty Zirk &mmdl. (42)

,

The dissipation and kinetic energy functions
are ;

Dz_% d; 1.7;' 1’1 K:—% m i di q, (43a, b)
where
dy= d;= fg C*Tolugn £ yde,

my= Mm;= fﬂnp fz‘k fjkd‘Q- (443, b)

The variational equation (36) becomes in a
matrix form

R

aj; —bi|[ @[ SF;+BF;
_bl‘j Cy pi TFZ+HF,

(45)

where SF; is the mechanical surface force,
BF; the mechanical body force corresponding
to ¢, TF; and HF:; are equivalent thermal
forces for surface temperature changes and
heat sources, respectively. Each explicit form
from equations (28), (29) and (37a, b) is

SFisz Gk,n,f,-ka’[‘, BFizfQ kaikd‘Qv

(46a, b)
and
TFi:pr”k gzdl’,
HFi=fQC/1klszgide- (46c, d)

If ¢ and p; are defined as nodal displace-
ments, equation (45) represents a general
formulation for finite elements. Interpolation

"_t')B
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functions fix and gix may be assumed to be
the same function if discretizations for the
mechanical field and the thermal field are
identical. Furthermore, if by is a symmetric
tensor, then the generalized stiffness matrix,
the third term in equation (45), is also sym-
metric. Equation (45) therefore represents a
generalized dynamic system with both the
mechanical deformation and heat displace-
ment treated as generalized coordinates. Also
note that the element by characterizes both
the thermal expansion and the thermome-
chanical coupling effects which play an inter-
active role between the mechanical field and
the thermal field.

3. The Transfinite Element Formulation

3.1 Summary of Thermoelastic Equations

Coupled thermoelastic equations are sum-
marized for an application of a weighted resi-
dual method which yields the weak form for
following governing equations:

on the thermal field,

equation of motion;
C2 TaAi;‘ H,': B'/+C/1,-]-S,' [O t] on .Q
(17

constitutive equations:
displacement-strain:

= H,"," BU € [O, t] on .Q (14)

C
strain-stress:
o=C T, (0, tJon £ (15)
boundary conditions:
H,= H, (0, t) on 'y (47a)
on;= ty (0, t) on ', (47b)

initial condition:
H,(x;,0=H, on £ (47¢)

A4 FIREMPEIEE =2X H13H M15(2000.3)

on the structural field,
equation of motion:

oUi= 0t B, (0, tJon I', (16)

constitutive equations;
displacement-strain;

eij=—%( U+ U;D [0, tlon 2 (9)

strain-stress:;
0 4= Ci;‘k/ e p— B,’,‘ TOH [O, t] on @ (12)

boundary conditions;

U= Ulo, t] on I, (48a)

0y N;= g (0, t] on I, (48b)
initial conditions:

Ul x;,00= U,on £ (48¢)

U.(x;,00= Uyon 2 (484)

3.2 The Laplace Transform of Thermoel-
astic Equations

The principal advantage of the Laplace
transform method applied to both the tran-
sient thermal analysis and the structural
dynamic analysis is that the time parameter
t can be eliminated, thereby resulting into
the finite element formulation on a type of
steady problem. The next equation (49) is
the fundamental formula commonly used in
conjunction with the Laplace transform method,

H9=LAY= [~ e "Aaat, (49)

where f(£) is any real function of time ¢ and
As) the Laplace transform of £At). After
dividing the physical domain into finite
elements appropriate for a given problem,
the first step to the thermal and the
structural analysis involves an application of
the Laplace transform in the time domain to
equations of motion and their corresponding



boundary and initial conditions, and thus
leads to the following transfinite element
equations:

on the thermal field,
equation of motion:
.5"]'+ A,jbileAij T{l‘ on 2 (50)

constitutive equations:
displacement-strain;

— Bij—

_0:' H,"," C e on £ (51)
strain-stress:
o=C7T,0 on 2

(52)

boundary conditions;

H=H, on I', (53a)

-o—‘n,'= _tih on Fh (53b)
on the structural field,
equation of motion:

o+ Bi=7 U; on £ (54)
constitutive equations:
displacement-strain:

;,y:’%‘( TJ;‘,;“*’ T];;i) on 2 (55)
strain-stress;

;= Ci ew— B; To0 on 2 (56)
boundary conditions:

TJ,'Z T]ibon Fu (578.)

_0',',‘ n;= _l‘,'bOl’l Pd (57b)

where

?Q,-=c§,+—‘sl H,, a=C*T,, (58a, b)
‘B,= B,+—§ U,o+—szz— Uy, y=p05.(58, @)

3.3 The Weighted Residual Approach

Equations (50), (53b), (54) and (57b) are

Ho
ox
Io\:

introduced into the weighted residual state-
ment6>

fg wi(y Ui— ¢;;— B)d2
+ glffm w,—( O; nj— t,b)d[' (59)
+f9 vi(a Ay Hi— o ;— Ay Q)dQ

+ Slf” y:(on,— ty)dl=0,

where ns is the number of space dimension
and w;, w; y and y, are chosen to be

arbitrary weighting functions which satisfy

wi=w;=0 only, vi=9;=0 onlg.

(60a, b)

An application of the divergence theorem to the
first term and the third term in equation (59) with

choices of weighting functions, w;= w; and

v;= v, leads to

[, wir U+ [ wis 7 sd0
~f, w Bde- gf“wi}ibdp
+ [, veHadet [ v, ode
_f.o,,y" Ay QidQ— ,”Zjlfrh’yi tyudl=0.
(61)
In the use of equations (51), (52), (55) and

(56), the second term and the sixth in
equation (61) can be written as

wi; 05 = Wiy Comw Uwot+ wap To By His
T, —
Twar—e Bi Uuas
(62a)
¥ij0= 3y CTo Hiim vy To By Ugp.
(62h)

BRFAMTATE S =2 M13H M15(2000.3) 45
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Note that if notations ( , ) and [ , ] are
referred to symmetric and antisymmetric
parts of the tensor, respectively, then relations
wij=wip+wip, wap=(wij+w.)/2, and wij=
(wisw;.)/2 are possible. Because of sym-
metries of Cyw and £y,

wiig Com U

=0, win —U(,-,,)=0, Wi By ﬁz’.i:O
(63a, b, ¢)

which are also absolutely true for yi,.

For finite element formulations, equation
(61) with substitutions of equations (62a, b)
can be of the vector form

fg (vw) TC(v DR
+ [, (v T, 805X Hd2
+fg wT(yT]—TB)d.Q— lnglfrv w’ tydl
+fg (vy) T TO(CV_ﬁ
~ BV D)2+ fgn v eAHdO— fQ vy AQde
- g}f”y t,dl=0,
(64)

where 4 and /4 also represent vector quantities.
If interpolation functions are assumed by

w=Nd, U=Ngq,, y=Lu, H=L p,,
(65a, b, c, d)

where p» and g, are nodal heat displacements
and nodal mechanical displacements at their
elements, respectively. Shape functions in
equation (65a, b, ¢, d) are substituted into
equation (64) and ps, @n, d and u are pulled
out of integrals to give the following matrix
equation:

ol
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r

['_"f :7’1] 4. =[ Fst Fyl (gp)
—-b ctdl| p, F,.+ Fy
where Z=IQ"NT7N5£Q, (67a)
_ T,
a= [, (VM= OV MR, (8Tb)
b= fg (vL) T T,8(v N2, (67¢)
o= [ (v 'CcT,(vLade (67d)
a= [ , LeaLdg, (67e)
—_ _ td T_
F = glfrm NT 4, (67£)
Fy= [ NTBde, (67¢)
T‘Tz & Jr, LT_thdF, (67h)
and Fy= f!e" LTAQde. (671)

Equation (66) is the finite element
equation for coupled thermal and mechanical
analysis in the Laplace transform domain
and has an element stiffness matrix and an
element force vector.

3.4 Assembled Finite Element Equation

Next, Boolean operators, An, and Ba, are
substituted into interpolation functions to
assemble the global system such that

¢,— A,q, U=NA,q,
o (68a, b, ¢, d)
p,= A,p, H=L B,p.

Accordingly, weighting functions become

w=NA,d, Vw=(VN)A,,
(69a, b. ¢, d)
y=L B,u, Vvy=(vL)B,.

The assembled algebraic equation results
into



., A, (mta B, -2 AnTETBn[ qn]
. N . - b,
-3 B,"34, ¥ B (+d8,
7 T —
_ Z‘ A, (Fgt Fp
2z B, (F,+ Fp

(70

where ne is the number of elements in the
transform domain.

3.5 Comparisons of Finite Element Equ-
ations

The dynamic equation (45), via an intro-
duction of generalized coordinates and a vari-
ational approach, is needed to change both
the space domain and the time to only one
space domain through the Laplace transform,
and is compared with equation (66) by the
Laplace transform and then by a weighted
residual method.

Using the following Laplace transform:

L) =sL{x)~(0)=sx— %, (71a)

LH) = s L) ~al0)—#0) = s*x~5x,5— X4
(71b)

where Xio and (dx/dt);, are initial conditions,
the equation (45) becomes the coupled ther-
moelasticity problem expressed by

[ 52 m,-,-+ .27 —bij ] Z],-z
—bij Cl-]-+S d,‘,‘ pj. (72)

SF1+BFZ+ m,y(S qia+ éiO)
TF+HF .+ 9, .

Equations (66) and (72) turn out to be exactly
the same 1if comparison of matrices is per-
formed term by term, and a consideration is
taken into boundries /n=/"% in SF; and /=
/n in TF;, respectively.

3.6 Types of Thermoelastic Problem in
the Laplace Domain

For a particular case of the uncoupled ther-
moelasticity, the temperature variation due
to coupling mechanical deformation is negligibly
small and the by term in the equation (72)
can be ignored. If the wave effects are small,
the inertia term my is neglected in the first
equation in equation (72), then these two
equations give the solution for the quasistatic
behavior of coupled or uncoupled thermoel-
asticity.

For an coupled quasistatic thermoelasticity,
its problem is governed by

a; —b; q] _ SEF+BF,
[ —b; cytsdill ) [ TFA+HF+ pl.
(73)

For an uncoupled quasistatic thermeslasticity,
its problem is governed by

a; 0 ) SF,+BF,
[ 0 C,']"\Lsdij Z}. [ TF,+HF1+ 15[0]'

(74)

3.7 Numerical Implementations

Durbin’s algorithm, one of numerical trans-
form inversion methods, has been in existence
for quite some time. It was originally used in
applied mathematics and later applied modal
response studies and related problems. The
numerical inversion algorithm adopting both
Fourier sine and cosine transforms presents
relatively moderate accuracy and efficiency.
The error bound on the inverse of a function
is independent of time being exponential in
time. In addition, from a viewpoint of gquali~
tative trend the corresponding trigonometric
series obtained for the function in the trans-
form domain has been valid for the entire
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period of the series until recently. The accu-
racy of the inversion algorithm increases with
the total number of terms used in the series.
When the last time point is slightly increased,
the results for the previous last time point
are as accurate as those during the total
transient. However, this algorithm tends to
produce less accurate results at the very last
point of the duration.

For obtaining the real time response of a
transformed function at desired times of in-
terest, the corresponding summation series for-
mulated for the function currently need a
certain multiplier which is directly propor-
tional to the exponential of the desired time
of interest and inversely proportional to the
exponential to the total duration of the
transient. Hence, it will be further research
to make numerical results more stable and
reliable for the implementation of this inversion
algorithm.

4. Conclusions

This paper describes an useful and alter-
native methodology based on the transfinite
element formulation for interfacing the inter-
disciplinary areas of heat transfer and struc-~
tural dynamics. The introduction of new
quantity, defined as heat displacement, is
needed for a unified expression of equations
of structural dynamics and thermoelasticity,
and the associated thermal constitutive relations
are newly established. Based on an analogy
between the heat displacement and mechani-
cal displacement, a variational principle is deve-
loped in the use of generalized coordinates
which represent heat and mechanical displace-
ments to derive finite element equations for
the general case of coupled thermoelasticity.

The development of a transfinite element
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approach for the unified thermal and struc-
tural analysis is presented using the Laplace
transform. Fundamental concepts of the approach
and details of the transfinite formulations
are described for combined heat transfer and
structural analysis. The dynamic finite element
equation obtained by a variational approach
demonstrates the exact agreement of results
from the transfinite element method in con-
junction with a weighted residual scheme.
Particular cases of the thermoelastic problem
are classified in the Laplace domain in terms
of the coupled problem and the coupled or
the uncoupled guasistatic problem.

It is strongly anticipated for a further
work that after developing the finite element
formulation in the transform domain, system
equations will be then solved in the trans-
form domain itself. Therein, the solution
response will be obtained by employing an
inverse numerical transform, which is an
important step in the solution methodology.
Nevertheless, the approach presented pro-
vides significant features and concepts for
combined thermal and structural models and
offers a significant potential for extensions to
other interdisciplinary areas as well.
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