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The Finite Element Analysis for Calculations of Equivalent Elastic
Constants Using the Homogenization Method
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Abstract

This paper discusses the homogenization method to determine effective average elastic constants of
a linear structure by considering its microstructure. A detailed description on the homogenization
method is given for the linear elastic material and then the finite element approximation is performed
for an investigation of elastic properties. An asymptotic expansion is carried out in the cross—section
area, or in the unit cell. Two and three lay-up structures made up of individual isotropic constituents
are chosen for numerical examples to check discrepancies between results generated by this theoretical
development and the conventional approach. Asymptotic characteristics of the process in extracting the
stiffness of structure locally formed by spatial repetitions yield underestimated values of stiffness.
These discrepancies are detected by the asymptotic corrective term which is ascribed to considerations
of microscopic perturbations and proved in the finite element formulation. The asymptotic analysis is
the more reasonable in analysing the composite material, rather than the conventional approach to
calculate the macroscopic average for elastic properties.

Keywords @ homogenization method, equivalent elastic constants, finite element formulation, composite
material
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1. Introduction

Composite materials play an increasingly
important role in industry. Their principal
feature provides an excellent ratio of weight
to strength suitable for a large variety of
engineering applications. It is not simple to
predict properties of the material including
each microstructure because composites are
inhomogeneous. One way of overcoming this
difficulty is to find equivalent material model
with no consideration of the microscopic
mechanics for individual constituents. Such a
model should represent the average mechanical
behavior as well as the composite material
heterogeneities.l)'Q)

Some researches have been done for deri-
vations of eigenstrains of composite materials
and determinations of their dependence on

4 Starting from the

different components.g)
multiscale asymptotic expansion for the displace-
ment and eigenstrain fields, a closed form
expression is needed relating arbitrary eigen-
strains to mechanical fields in phases. In
homogenization theory the composite material
can be assumed to be locally formed by
periodic repetitions of very small microscopic
cells compared with the overall macroscopic
dimensions of the structure. Hence, material
properties are periodic functions of the micro-
scopic variable. The homogenization method
provides a reasonable solution for some pro-
blems where the experimental data is not
available or where bounds for equivalent
material constants can be found by other
theories.” Some cases of the homogenization
consider composite materials consisting of
elastic media with periodic holes and rigid
inclusions and fiber reinforced elastic materials.
These may produce slipping between the fiber
and the matrix at the slipping boundary with

. . . . [
linear, nonlinear or viscous tangential forces. )
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However, one dimensional expansion is the
first essential step for checking the appli-
cability and the generalization of the homo-
genization method to the three dimensional
composite material.

The purpose of the present paper is to
obtain the finite element solutions for equi-
valent material of the
structure which consists of different isotropic

properties linear
materials stacked only in the transverse
direction. In doing so, the homogenization
method is mathematically formulated and
discussed in terms of the finite element
approach. Numerical experiments are also
performed for a study of its solution accuracy
and influence in the overall average solution
from a viewpoint of anisotropic structure.

2. Elasticity Homogenization

2.1 Structure Configuration

Consider a structure formed by the spatial
repetition in x2 direction on a base cell made
of different materials in the Fig. 1. The cross-
section of the structure is represented by a
base cell that is very small, of order & compared
with the dimension of the structural body. If
the body is subjected to external loads and
boundary conditions, the resulting deformations

X3
E, v, e
By vy el
E v e W
E. v L7 X4

Fig. 1 The configuration of the structure con-
sisting of different isotropic materials
stacked in the transverse direction and
its unit cell



and stresses rapidly vary from point to point
because of repetition of microscopic base cells
producing heterogeneity. In other words, these
quantities rapidly vary within a small neigh-
borhood & of a given point x(i=1, 2, 3).
Thus, it is reasonable to claim that all
quantities have two explicit dependences.
One is dependent on the macroscopic level x;,
and the other is on the microscopic level x;/
e, i. e., letting g be a general function,
g=(x;, x/e). Due to the periodic nature of
the microstructure, the dependence of a
function on the microscopic variable y;=x;/ ¢
is also periodic.3>

2.2 Asymptotic Expansions in x2 Direction

2.2.1 Strain Field

If different isotropic materials are stacked
in the transverse direction of the structure,
the spatial repetition in the very small neigh-
borhood ¢ can be considered in the cross—sec-
tional area as well as in one longitudinal
direction. The dependence of the displacement
u on both macroscopic and microscopic level
makes it reasonable to assume that the dis-
placement u can be expressed as an asymptotic
expansion with respect to the parameter &,

: 4)
1. e,

wxy, vo) = u®Cxy, vo)+ e’ w'(xy, v,y

+ e ul(xy, y)+.....

(1)
A differential operator can be defined as
follows:
d‘j’ck=8xk+—£8yk, (2a)
where
axk: Slk axl, (2b)

Ho
4
}q:

0 V= BZka—ayz . (2C)

Kronecker delta, dix and dax (i. e., du=1,
i=k), is used and the subscript k(=1, 2)
denotes a summation index for a asymptotic
expansion in terms of the displacement. Thus a
symmetric differential operator can expressed in
the next equation (3a) by using the differential
operator (2a, b, c).

e =G G = e+ L e (),
(3a)
where
du; du;
eijx(u)z_%( Oy dz;l + 8y d::ll) (3b)
and
du; du;
e (10 =5 Oyt t 8y l). (30)

By further performing the expansion with
equations (1) and (3a), the asymptotic
expansion of the strain field is of the following

form:
el-,-(u)= E-l 21*]'_1"‘ 60 e,~,-0+ El el-,»1+...,
(4a)
where
e; = eu(ul), (4b)
ez'/'oz eijx( u0)+ eijy( ul); (4C)
and
e;'=euCu')+ ey ud). (4d)

2.2.2 Stress Field

By assuming that the quantity Dyma(32) is
the elastic constant in the x2 direction, the
resulting asymptotic expansion for stress is
given by

05(0)= D jn( ¥2) €y (20). (5)
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Therefore, the substitution of equation (4a)
into equation (5) results in

6,;(u)= 6_1 O',']'Al‘f“ 60 0'1‘]'0+ 61 01j1+... R
(6a)
where
657 '= D ¥2) €m ' (6b)
01'1'0: Di/'mn( YZ) emno, (6C)
and
Jtilz Di;’mn( y2) emnl- (6d)

2.2.3 Equilibrium equation

The basic equilibrium equation is of the
following form:

d
dxk

( Uik)+ b,=0, (7)

where b(xx) is the internal body force per
unit volume. The differential operator (2a, b,
¢) and the stress (6a) are applied to equation
(7) and then the asymptotic expansion for
displacement yields the asymptotic equilibrium

equation given by

@ apt ey e™ o't e® 6%+ &' ap'+.)

3 a4 ! 2,0 04" 9 oa!
— 2 ik 1 ik ik

€ Iy e v dxp )

3 65", 3 gy

0 ik ik A
+ € (_axk s + &)+,
= 0.

(8)

According to the perturbation theory, coeffi-

cients of each power of & in governing

equations must be equal to zero and thus
satisfy the followings for each order:

0(e™):

This case also holds for a general case k.
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The coefficient is given by

-1
e el ()
The equation (9) has an analogous form to a
general equilibrium equation with no term for
the body force and can be used to express the
strain energy which is represented by the
product of strain and stress over the total
control volume. In the use of equations (4b)
and (6b), the corresponding potential energy
is obtained by

_ ("1 -1 -1
Hs_z_ 0 ? € yn O i dyk

Y .
=j‘0 % Dijmn( yk)[ emny( uo)]zdyk-

(10)

When the first variation is applied in the
equation (10) so as to find out a stationary
state, the equation (10) is expressed by

v 0 0
I = [ € ( %% D g ( ¥ 08 € w1,
(1D
where Dima(yx) is the symmetric and positive

Semny(1®) is arbitrary and
thus the equation (11) results in

definite matrix,

€y ( u")=0. (12)
This implies that u’ is independent of the
coordinate yx and a function of only xx in
other words,

w'= 2% x,).

(13)

In equations (4b) and (6b), the stress ou
shows a sole dependence on yx and leads to

(14)



o
oX
}014

O(e™):
3 o’ o gy
Ve dxy

=90. (15)

The second term of the equation (15) vanishes
due to the equation (14). Therefore, the equation
(15) becomes the following with an aid of
equations (4c¢) and (6¢):

a
Y

Din| @ 4D+ €,y ( ')]=0. (16)

If the first perturbation term wi(xx, y&) can
be rewritten via the introduction of variable
separations and equation (3b), the displace-
ment wu; and its associated strain emny becomes
the followings, respectively,

d

4"
w'(xp y)=H(,) 3%, 17
and
Cmm(u)=F e (D). (18)

The substitution of the equation (18) into
(16) yields

e ¥ 50 Dim (FE+1)=0,  (19)

where the elastic modulus Dikm» is not zero,
symmetric and positive, and then the new
elastic modulus, or equivalent material stiffness,

D, is defined by

D= D,-km,,(;—i-i-l)= constant. (20)

Consequently, the equation (15) is reduced to

0 O'iko
IV

= emnx( uO) 3(.93}}3 Dikmn( aafk

(@21

+1)=0.

0(e?);
9 Uiko J Gikl
dxy Iy

By using equations (4d), (6d) and (21), the
equation (22) is of the form

3 € %)

oH .
vy [D,,mn( 7o+ D+ b,

+3%;[ Dikmn{ emnx( u1)+ emny( uz)}]zo.

(23)
The integration of the equation (23) with
respect to yr along with recalling the equation
(2.c) and the displacement u¢ independent of
vk results into
2 [ D (G D]avet 5y
F[ Dimnf @mme( 2+ € ( uz)}]OY=O.
(24)

The third term of the equation (24) vanishes
due to the periodicity, equal on opposite
sides of the unit cell. Accordingly, the equation
(24) is reduced to the general form of the
equilibrium equation,

02w’ 1 (7 oH B
9 xkz on [ D o ayk"‘l) dy,+ b,=0,
(25)
2 0
or D2t b=0, (26)
k

which is also used for computing residual
stresses in the macroscopic homogenized problem.

3. Implementation of Homogenization in
Finite Element Program

3.1 Finite Element Approach

The equation (19) implies a general form
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of the equilibrium equation in terms of strain,

aaf +1, with the displacement emns(u® can-

celled out. The similar reasoning in the
derivation of the equation (10) can be applied
for the derivation of the total potential energy
which is represented by7)

HH( yk)

H£-1=foy D ( 94 D) dy

(27)

If the domain in the unit cell is subdivided
into elements, the equation (27) is given by

e 1= i[ _% z/mne( aaf +1) |.,|d5k
(28)

where the subscript k is equal to 2 for the
present problem, the superscript e for sum-
mations is the element number, ne the total
number of elements, & the natural coor-
dinate for an element over the interval (-1,
1), and |/ the Jacobian of the transfor-
mation for an element over the interval (0,

i ], in which the dimension Y is selected

el
as the unity because of the domain over the
unit cell.

The class of admissible functions for all
H(yx) has continuous derivatives through the
first derivative, i. e., C' functions, as well as
satisfies the essential boundary conditions.
Next, a set of degree of freedom for an
element d®is defined and the corresponding
displacement is interpolated within the ele-
ment in terms of d° such as

HE= 2 N(9di=N d’, (29)
where nes is the number of element degree
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of freedom, Ni(&£) the shape function associated
with degree of freedom d ¢ and the bold face

the matrix. The derivative of the displace-
ment H(&) allows for the change in variable
calculated by

8 =_1
¥

W
R

d°. (30)

A set of the global degree of freedom d can
be defined for the unit cell continuum and
the element degree of freedom d° is related
to d through the Boolean matrix, or the
assembly operator A°,

e e

d’= A°d. (31)

By substituting the equation (31) into (30),
the equation (28) is rewritten as

n 1
.= fol% D (B A°d+1)’\Nd e,
(32)

The stationary point of the equation (32) is
given by taking the first variation,

"fomd A® BeTDeBeAeddék
1

(33)

The variational displacement &d is arbitrary,
the bracketed term must be zero. If the
assembled stiffness matrix k and the
assembled force vector f is denoted by the
following, respectively, then the equation
(33) has a weak form for the finite element
approach.7)

kd=f, (34)

where



k=2 Jna" a4 BT DB A aae,
(35)
and

f=— 3 [ 11D B* A" ads,. (36)

e=1

For specification of boundary conditions,
displacements are fixed at four vertices A, B,
C and D in the Fig. 2, i. e., ua,. B, ¢. b = 0!
displacements are all the same along AB and
CD, i. e., u = uap = ucp: tractions are free
along AC and BC, i. e., fac = fzp = 0. Im-
posing essential boundary conditions at nodal
displacements and natural boundary conditions
at nodal forces lead to the global constraint
operation which modifies the stiffness matrix
from k to K" the force vector from f to F"
and the displacement vector from d to d”
The equation (34) changes in the form of

, -, ’, , , - C
- , ’ ’ . ’
. e ’ , . .
, ’ s , ’ ’
. ’ ’ ’ ’ ,
’ 7 7 ’ . P
. ’ . . . .,
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Fig. 2 The configuration of boundary conditions
imposed in the unit cell and element
grids for square elements and triangle
elements of which the dotted-line stands
for applications to triangular ones

Equivalent material properties can be derived
from the homogenization theory. It can be
approximated from the equation (25),

o
oX,
fote

Y Y
Z‘)=fo Ddyk-l—fo Daa—idyk. (38)

The first term of the equation (38) represents
the total sum of individual elastic modulus
occupied in the unit cell, while the second
term corresponds to the force vector -F' in
the equation (37). Accordingly, the homogenized
elastic constant is obtained by

D= 121 v.D~ K" d". (39)

where V; is the volume fraction, n the number
of constituents, D; its related stiffness and
K" is the symmetric and positive definite
matrix. Thus the second term plays a role of
the external energy in a unit cell.

3.2 Pseudo Code

The program is developed to calculate material
constants for the finite element analysis based
on the homogenized method described above.
The basic structure of the program is in Table 1.

Table 1 The pseudo code for the finite element
analvsis using the homogenized method

call preprocessor
call structure (basic cell)
call node (topology)
call element (no. of elements)
call material ( E\, vy, =, E, . V,)
call boundary_condition
call processor
call Gauss_point
call bandwidth
call element_shape (square 4 or 8 nodes,
triangle 3 or 6 nodes)
call element_matrix
call constraint (periodic displacement or free traction)
call assembly_matrix
call stiffness
call solve
call postprocessor
call constituent (volume fraction)
call material_constant (homogenized material constants)
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4. Numerical Experiment

4.1 The Conventional Approach

To compare the homogenized elastic constants
with those computed by the conventional
approach, micromechanics for this method is
based on the properties of the constituent
materials.®’ The key feature of the procedure
is that assumptions are made with regard to
the mechanical behavior of a composite material.

The first and the second modulus E, and

‘E,, shear modulus G, major Possion’s ratio

V12 can be derived as follows:

E\=2E;V, (40)

E2= V. (41)
2 2

lezzz V,‘ Vi (42)

and Gp= IV_ \ (43)
2 .

where E; is Young's modulus, »; Possion’s
ratio of material / and V; the volume fraction.
The stiffness matrix form is of the form

below,

By v By
1_ Vi Vg 1—- 11‘12 Vo
E
== 0 (44)
1= vy vy .
SYM Gz

4.2 Numerical Experiments

The material data used for a compu-

tational experiments are given in the Table
2. If the axis x2 and the axis x3 in the Fig.
1 are replaced simply with the axis 1 and
the axis 2, respectively, elastic constants to
be evaluated correspond to stiffnesses Ciy,
C22, C33 and Crz. Table 3 shows a repre-
sentative comparison of results by the finite
element analysis and by the conventional
method using 4-node isoparametric square
elements. As shown in Fig. 2 other numerical
performed using 8-node

and 3-node

experiments are
isoparametric square elements,
and 6-node isoparameteric triangle elements.

Table 2 Material data used in the numerical
experiment

Material Elastic Modulus | Possion |Shear Modulus
Ei. E» (Gpa) | Ratio » | Gi2 (Gpa)
1: Aluminium 68.21 0.34 25.45
2: Low Alloy Steel 206.70 0.28 80.74
3: Copper 124.00 0.35 45.93
MATERIAL 3 MATERIAL 2 MATERIAL 1
MATERIAL 2 MATERIAL 2 MATERIAL 2
MATERIAL 1 MATERIAL 1 MATERIAL 1
CASE 1 CASE 2 CASE 3

Fig. 3 Two and three lay-up structures for
the finite element analysis

Table 3 Comparisons of stiffnesses calculated by the FEM using both the asymptotic approach

and the existing approach

Cu (Gpal C22 (Gpal Css (Gpal Ciz {Gpal
Case | Asymptotic Existing Asymptotic Existing Asymptotic Existing Asymptotic Existing
1 143.45 145.45 39.14 122.09 27.28 40.86 36.24 38.52
2 168.81 172.46 44 .85 132.43 31.35 46.78 26.25 39.76
3 124.10 124.16 30.94 95.70 21.77 33.00 25.42 30.52
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Fig. 4 Comparisons of values of stiffness Crs
estimated by the finite element method
using the asymptotic expansion and
by the existing method. The solid line
represents a perfect correlation between
results from two methods
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Fig. 6 Comparisons of values of stiffness
Css estimated by the finite element
method using the asymptotic expansion
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line represents a perfect correlation
between results from two methods

150 T T

x ; 4-Node Square Element

0; 8-Node Square Element

+; 3-Node Triangle Element
. *; 6-Node Triangle Element
Z00 - .. 4
& —-; 70% Ditference
=
i
w
x
=
a CASE|
S st CASEIll ]
@ -
% Ci I B ,i it
E_; - -

0 - - 1 1
0 50 100 150
STIFFNESS C22 by THE EXISTING METHOD (GPa)
Fig. 5 Comparisons of values of stiffness Cz2

estimated by the finite element method
using the asymptotic expansion and
by the existing method. The solid line
represents a perfect corretation between
results from two methods

50

(%3 @ S
S & >
T T

STIFFNESS C12 by THE FEM (GPa)

n
b
T

x ; 4-Node Square Element
0; 8-Node Square Element
+; 3-Node Triangle Element
*+ 6-Node Triangle Element
-~ ; 30% Difference

e
-
— 4

CASE It
CASE Il /ﬁ/ -

1 L 1 L i

Fig.

25 30 35 40 45 50
STIFFNESS C12 by THE EXISTING METHOD (GPa)

7 Comparisons of values of stiffness
C12 estimated by the finite element
method using the asymptotic ex-
pansion and by the existing method.
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Three numerical samples are shown in Fig. 3
where each sample has an equivalent volume
fraction to all three constituents in the cell.
A little difference is observed between values
of Ci; calculated by both approaches in Fig.
4. It is noted in all figures that the solid
line represents a perfect correlation between
results from the asymptotic analysis and the
existing one, and the dashed a deviation
from it. However, the large discrepancies are
shown in Fig. 5 and Fig. 6 for values of Ca2
and Cssz by up to 70% and 30%, respectively.
Differences by maximum 30% are resulted in
values of Ci2 in Fig. 7 where the stiffness in
the case I closely match the value calculated
by the conventional method. The value of Cz2
always remains less than that of Cu
irrespective of the stacking order as well as
the constituent from a viewpoint of aniso-
tropic materials. The asymptotic approach
with an adoption of up to the second order of
strain has a dominant influence on elastic
constituent equations. In other words, stiffness
results from the conventional approach is based
on an assumption that the strain behavior has
an average value from a macroscopic viewpoint,
whereas the asymptotic approach describes
the detailed periodic behavior dependent on
microscales in a very small neighborhood of
the structure as well as macroscales. The asymp-
totic analysis is considered the more reaso-
nable in analysing the heterogeneous material
because it is locally formed by spatial re-
petitions. Such characteristics of the process
in extracting the stiffness of interest directly
yield differences in stiffness. These discrepancies
are detected by the asymptotic corrective
term which is observed in the finite element
formulation. Consequently, values estimated
by the asymptotic approach are less than
those by the conventional approach which
has been known to simply calculate elastic

60 s=EFATRBEE =2 M133 H12(2000.3)
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constants on an arithmetic average in com-
posite materials.

5. Concluding Remarks

In this paper the homogenization method
is applied for predictions of the equivalent
material modulus in the structure stacked by
isotropic different materials. The asymptotic
approach is presently taken into account
perturbations only in one direction depending
on characteristics of the structure confi-
guration. Equivalent material properties are
computed based on the related finite element
formulation where boundary conditions are
imposed the same on opposite sides over the
domain. Magnitudes of the elastic constant
are observed much less than those resulted
by the conventional approach. Their discre-
pancies are accurately estimated by a cor-
rective term from the finite element formul-
ation.

Three cases for numerical experiments are
demonstrated for comparisons with the con-
ventional approach in which elastic constants
are calculated by the sum of individual
fractional elastic constants. It is anticipated
that the asymptotic approximation need to be
expanded to the three dimensional problem
encountered in a general composite material
even if here the perturbation is considered in

only one direction.
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