O|Est MSAMOZ taperZl
X

Determination of Eigenvalues of Sinusoidally Tapered Members
by Finite Element Method
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Abstract

The two eigenvalues (elastic critical load and natural frequency of lateral vibration) of sinusoidally
tapered bars with simply supported ends were determined by the finite element method. For the convenience
of structural engineers who are engaged in the structural design or vibration analysis of tapered beam-
columns, eigenvalue coefficients were expressed by simple algebraic equations. The validity of each
algebraic equation was confirmed by the value of unity for each correlation coefficient. The influence
of axial thrust on the lateral vibration frequency was also investigated. For this purpose, the axial thrust
was increased successively and the corresponding frequency was calculated, The approximate linear
relationship between the axial thrust and the square of the frequency was confirmed for each of the
tapered members.

Keywords : sinusoidally tapered member, taper parameter, sectional property parameter, elastic
critical load, natural frequency of lateral vibration, regression analysis

1. Introduction

The vibrating tapered members under axial
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thrust are often seen in several fields of en-
gineering problems. A tapered column under
the ground motion or shock (impact) is such
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an example. In this case, the dynamic be-
havior of a member is governed by the two
eigenvalues of that member, that is, the elastic
critical load(= P,) and the natural frequency
of lateral vibration (= @,). The two eigenvalues
of a prismatic bar can be easily determined
either by analytical methods or by numerical
methods.

For the cases of tapered members(especially
when the cases of sinusoidally tapered members),
however, the determination of eigenvalues be-
comes possible only when one relies on the
numerical methods. Furthermore, the axial
force vs frequency relationship such as given
by Eq. 1 is hard to determine because of several
geometric factors, for example, the sectional
property parameter and the taper parameter.
(see Fig. 1) The first combination of (0,2)
represents the case of a built-up member consist-
ing of four angles connected by diagonals. The
sectional properties about the strong axis of
a rectangular member with variable thickness
can be represented by (1,3). The combination
of (2,4) represents the properties of a solid
truncated cone or pyramid.

In this paper. the two eigenvalues of the
simply supported tapered members shown in
Fig. 1 were first determined by the finite element
method. Next, the results were expressed by
simple algebraic equations for the convenience
of structural engineers. To investigate the rela—
tionship between axial thrust and frequency of a
member, the axial force was successively increas-
ed from zero to the elastic critical load of that
member. Next, the corresponding frequencies
were calculated. It turned out that Eq. 1 is
also applicable to the tapered members.

2. Formulation of the Problem

For the single prismatic members, the axial
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thrust, P and the reduced lateral vibration
frequency, @ due to P, are generally related
by the following equation. (see Fig. 5)”

P o
Pcr+(wo) =1.0 (D

In Eq. 1, P, and w, denote the elastic critical
load and the natural frequency of lateral vib-
ration, respectively. Experimental tests on
rigid rectangular frames"? also showed that
the relationship given by Eq. 1 is also appli-
cable with minimal error.
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Fig. 1 Sinusoidally tapered members



The two eigenvalues of a single prismatic
member are easily determinated even by analy-
tical methods. For the rectangular frames,
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however, only the numerical method
the determination of eigenvalues possible. As
stated earlier, this paper aims to prove that
Eq. 1 is also applicable even in the cases of
sinusoidally tapered members. (see Fig. 1) Here
in this paper, the finite element method was
adopted to determine the eigenvalues. The
formulation of element matrices are outlined
briefly in the following® ™.

The flexural strain energy of the element

is given by

17 d®v 2 _
U=4 foEI(x)( eV (2-a)

If the element is vibrating harmonically
with frequency o, the external work of the el-
ement is given by

& (2 0 P (lduye
W= [ gA(x)dx-+—2f0(dx)dx

+5(8) TN ) (2-b)

where the first term denotes the work done by
unit weight of material).
The remaining two terms are the work due
to constant axial force P and nodal forces
{g} with {gq}=[%]{8} respectively.

inertia force( p
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Fig. 2 Typical element with four degrees of
freedom
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The displacement function, «(x) in Eq. 2 can be
expressed by the following matrix form.

v=[N{o}, [M=[N N, N; N;] (3)

where {8} is the nodal displacement vector
and shape function component, N; (i=1,2,3,4)

is given by

N=1-3C)+2(F)°
N2=x(1——);)2
Ny=3() =2(F)°

2

Equating strain energy for the element to
the external work and rearranging terms, one
can obtains.

[E]1=[F],— Plk],— &*[m], (5)

The matrices appearing in Eq. 5 are given
).9)
byS .

[%k], (=flexural stiffness matrix)

- L'El(x){‘é—jfy}r[ dzN}dx

dxt
12 ) symm.,
__EIe) | 61 4/ ;
Pl —-12 —61 12 (6-a)

6/ 20 —61 AP

[£]1, (=geometric stiffness matrix)

= [ g e
36 symm.,

_ 1| 31 4P ~
=300 -3 -3/ 3 (6-b)
30 —F =30 4P
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[m], (=consistent mass matrix)

H
= fo L AGHNYNY ax
156 , symm.
A(e)l 221 47 _
=T 420g 54 13/ 156 (6-c)

—13/ —3F —221 4P

where I(e) and A(e) denote the values of
I(x) and A(x) computed at mid-length of each
element. The errors produced by these replace-
ments are insignificant. For example, when
the member of Fig. 1 (b) is subdivided into
20 equal elements (1=L/20). the exact (&),
is given by 960 EI/# when (m,n)=(2,4) and
@ =2.0. Meanwhile, (%), is 964 EI,/# when
I(x) is replaced by I(e). In the same way,
the exact (my;). is given by 3.309 pAyl/g and
(myy). is 3.329 pAyl/g when A(x) is replaced
by A(e).

3. Eigenvalue Calculation

When the element matrices are assembled
for the whole member, the external force vector,
{@) and the external displacement, {4} are
related by the following equation.

{Q}=([K1,— P[K1,— & LM )4}, {@}={0}(7)

where [K],,l, [K], and [M], are the assem-
bled matrices of whole member, respectively.

To obtain the critical load, one lets ” be
zero in Eq. 7. In the same way, one lets P be
zero determine the natural frequency of lateral
vibration. Due to the size of assembled matri-
ces, eigenvalues were determined by computer-
aided iteration method. The first eigenvalue
calculation by iteration method became possi-
ble when Eq. 7. was transformed into the
following form”.
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(Critical Load)
(K1, [K1,— 5L} ={0) (8-a)

(Natural Frequency)
(K1 M)~ d7 LIy = (0) (8-b)

where [I] is the unit matrix.

It is generally known that the results ob-
tained by numerical methods converge to the
exact values rapidly by mesh refinement.
Fig. 3 shows some examples of convergency
related to the present eigenvalues. As can be
seen in these graphs, eigenvalues converge to
certain values after N=16.
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Fig. 3 Convergency of fundamental frequency

In this paper, tapered members were divid-
ed into 20 equal segments (N=20) and the ei-
genvalues were determined by the procedures
given by Eq. 8. Table 1 shows the critical
load coefficients and Table 2 shows those of
natural frequency. The columns “Cp, in these
two tables indicate the eigenvalue coefficients
determined by finite element method. The curves
depicted in Fig. 4 represent the critical load
coefficients C with respect to parameter «
and n.



Table 1 Critical load coefficient
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Table 2 Natural frequency coefficient
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(a) Non-symmetrically tapered bar

n=2 n=3 n=4 (m, m)=1(0,2)|(m n)=(,3)|(m n=(02 4

a szm Cest C/em cest Cfem cest a C/’em cest C/em Cest Cfem Cest
0.0] 9.8693 | 9.8053 | 9.8693 | 9.8258 | 9.8693 | 9.9547 0.0] 9.8695 | 9.8958 | 9.8695 | 9.9117 | 9.8695 { 9.9348
0.1] 11.2334 | 11.2146 | 11.9793 | 11.95% | 12.7663 | 12.7769 0.1] 10.5314 | 10.5416 | 10.5292 | 10.5438 | 10.5246 | 10.5463
0.2] 12.6577 | 12.6642 | 14.2884 | 14.2943 | 16.1134 | 16.0756 0.2] 11.1845 | 11.1828 | 11.1705 | 11.1683 | 11.1549 | 11.1450
0.3] 14.1459 | 14.1560 | 16.8162 | 16.8300 | 19.9055 | 19.8509 0.3] 11.8321 | 11.8195 | 11.8028 | 11.7852 | 11.7576 | 11.7309
0.4] 15.6760 | 15.6893 | 19.5269 | 19.5666 | 24.1479 | 24.1028 0.4] 12.4665 | 12.4515 | 12.4149 | 12.3%45 | 12.3356 | 12.3039
0.5] 17.2604 | 17.2641 | 22.4459 | 22.5041 | 28.8742 | 28.8312 0.5] 13.0945 | 13.0790 | 13.0176 | 12.9962 | 12.8981 | 12.8640
0.6 18.8970 | 18.8803 | 25.5887 | 25.6426 | 34.0767 | 34.0362 0.6] 13.7165 | 13.7018 | 13.6160 | 13.5904 | 13.4435 { 13.4113
0.71 20.5705 | 20.5381 | 28.8993 | 28.9820 | 39.7644 | 39.7177 0.7] 14.3278 | 14.3201 | 14.1955 | 14.1769 | 13.9735 | 13.9458
0.8] 22.3103 | 22.2374 | 32.4012 | 32.5224 | 45.9174 | 45.8758 0.8] 14.9399 | 14.9338 | 14.7647 | 14.7558 | 14.4855 | 14.4673
0.9 24.0996 | 23.9782 | 36.1387 | 36.2636 | 52.5316 | 52.5104 0.9] 15,5473 | 15.5429 | 15.3343 | 15.3272 | 14.9804 | 14.9761
1.01 25,9174 | 25.7606 | 40.0381 | 40.2059 | 59.6213 | 59.6216 1.0] 16.1440 | 16.1474 | 15.8883 | 15.8910 | 15.4623 | 15.4720
111 27.8065 | 27.5844 | 44.1282 | 44.3490 | 67.2307 | 67.2093 1.1] 16.7443 | 16.7472 | 16.4344 | 16.4471 | 15.9376 | 15.9550
1.21 29.7224 | 29.4497 | 48.4779 | 48.6931 | 75.3165 | 75.2736 1.2] 17.3348 | 17.3425 | 16.9859 | 16.9957 | 16.4007 | 16.4251
1.31 31.6634 | 31.3565 | 52.9919 | 53.2381 | 83.9358 | 83.8144 1.3] 17.9158 | 17.9332 | 17.5250 | 17.5367 | 16.8590 | 16.8825
1.41 33.6854 | 33.3049 | 57.6590 | 57.9840 | 92.9372 | 92.8318 1.4] 18.5043 | 18.5194 | 18.0516 | 18.0700 | 17.2959 | 17.3269
1.5 35.7387 | 35.2048 | 62.4939 | 62.9309 | 102.4208| 102.3257 1.5] 19.0857 | 19.1009 | 18.5689 | 18.5958 | 17.7246 | 17.7585
1.6 37.8592 | 37.3261 | 67.6152 | 68.9309 | 112.4648 | 112.2962 1.6| 19.6705 | 19.6778 | 19.0955 | 19.1140 | 18.1522 | 18.1773
1.7 40.0030 | 39.3990 | 72.8792 | 73.4275 | 122.9639| 122.7432 1.7] 20.2475 | 20.2501 | 19.6101 | 19.6246 | 18.5698 | 18.5832
1.8| 42.2168 | 41.5134 | 78.3146 | 78.9772 | 134.0065 | 133.6668 1.8 20.8280 | 20.8179 | 20.1166 | 20.1276 | 18.9845 | 18.9762
1.9 44.3655 | 43.6693 | 83.9940 | 84.7278 | 145.2971 | 145.0670 1.9 21.3798 | 21.3810 | 20.6264 | 20.6230 | 19.3733 | 19.3564
2.0] 46.6824 | 45.8667 | 89.7409 | 98.6794 | 157.2013 | 156.9737 2.0 21.9607 | 21.939 | 21.1631 | 21.1109 | 19.7681 | 19.7238

(b) Symmetrically tapered bar (b) Symmetrically tapered bar

n=2 n=3 n=4 (m, m) =0, 2) |(m, n) =(1, 3)|(m, n) = (2 4)

@ C/em Cesl C/em Cesl C/’em Cest a C/em Cesl C/em cest Cfem Cesl
0.0] 9.8693 | 9.6282 | 9.8693 | 10.6451 | 9.8693 | 12.9940 0.0] 98695 9.8896 | 9.8695 | 9.9012 | 9.8695 | 9.9214
0.1111.6079 | 11.5271 | 12.5768 | 12.8581 | 13.6348 | 14.7225 0.1 10.7042 | 10.7093 | 10.6994 | 10.7090 | 10.6974 | 10.7099
0.21 13.4586 | 13.4906 | 15.6868 | 15.6225 | 18.2482 | 17.9377 2 | 11,5278 | 11.5256 | 11.5149 | 11,5095 | 11.4898 | 11.4846
0.3] 15,4344 | 15,5185 | 19.2161 | 18.9473 | 23.8603 | 22.6307 0.3] 12.3479 | 12.3383 | 12.3175 | 12.3028 | 12.2696 | 12.2456
0.4] 17,5174 | 17.6109 | 23.1678 | 22.8235 | 30.5056 | 28.8045 0.4 13.1587 | 13.1476 | 13.1047 | 13.0887 { 13.0223 | 12.9927
0.5] 19.7034 | 19.7677 | 27.5799 | 27.2541 | 38.2950 | 36.4590 0.5] 13.9604 | 13.9534 ] 13.8847 | 13.8674 | 13.7569 | 13.7260
0.6 | 22.0243 | 21.9890 | 32.4422 | 32.2391 | 47.2418 | 45.5%42 0.6 14.7654 | 14.7557 | 14.6520 | 14.6388 | 14.4640 | 14.4455
0.7] 24.4493 | 24.2747 | 37.8027 | 37.7785 | 571.5867 | 56.2102 0.7] 15,5636 | 15.5545 | 15.4153 | 15,4028 | 15.1709 | 15.1511
0.8] 26.9626 | 26.6249 | 43.6334 | 43.8723 | 69.2625 | 68.3069 0.8] 16.3511 | 16.3499 | 16.1665 | 16.159 | 15.8565 | 15.8430
0.9] 29.6192 | 29.0395 | 50.0039 | 50.5204 | 82.3064 | 81.8844 0.9] 17.1457 | 17.1417 | 16.9171 | 16.9091 | 16.5208 | 16.5210
1.0] 32.3613 | 31.5187 | 56.8047 | 57.7230 | 97.0227 | 96.9427 1.0] 17,9303 | 17.9301 | 17.6470 | 17.6514 | 17.1893 | 17.1853
1.1] 35.2118 | 34.0662 | 64.2012 | 65.4799 | 113.1292| 113.4816 1.1 18.7124 | 18.7149 | 18.3821 | 18.3863 | 17.8296 | 17.8357
1.2 38.1732 | 36.6702 | 72.0452 | 73.7912 | 130.6720| 131.5013 1.2] 194931 | 19.4963 | 19.0993 | 19.1139 | 18.4467 | 18.4723
1.3] 41.2212 | 39.3427 | 80.4965 | 82.6569 | 150.0019] 151.0018 1.31 20.2667 | 20.2741 | 19.8202 | 19.8343 | 19.0648 | 19.0950
1.4 44.3751 | 42.0797 | 89.4541 | 92.0770 | 171.2479| 171.9830 141 21.0383 | 21.0485 | 20.5303 | 20.5473 | 19.6870 | 19.7040
1.5 | 47.6505 | 44.8811 | 99.0309 | 102.0515 | 193.6790 | 194.4450 1.5] 21.8122 | 21.8194 | 21.2426 | 21.2531 | 20.2677 | 20.2992
1.6 | 50.9614 | 47.7469 | 109.0645 | 112.5804 | 218.4140 | 218.3877 1.6 22.5688 | 22.5868 | 21.9386 | 21.9516 | 20.8698 | 20.8805
1.7] 54.4866 | 50.6773 | 119.7284 [ 123.6637 | 244.5312 | 243.8111 1.7] 23.3486 | 23.3507 | 22.6368 | 22.6427 | 21.4431 | 21.4480
1.8 | 58.0626 | 53.6720 {131.0469| 135.3014 | 272.5061 | 270.7153 1.8] 24.1152 | 24.1112 | 23.3373 | 23.3266 | 22.0119 { 22.0018
1.9( 61.7016 | 56.7313 | 142.6699 | 147.4934 | 302.1071 | 299.1003 1.9| 24.8722 | 24.8681 | 24.0091 | 24.0032 | 22.5661 | 22.5417
1240[ 65.4916 | 59.8550 I 155.0469 1 160.2399 | 332.8216 | 328.9660 2.0] 25.6382 | 25.6216 | 24.6921 | 24.6726 | 23.0875 | 23.0678
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(b) Symmetrically tapered bar

Fig. 4 Changes of critical load coefficients

In general, the numerical analysis results
are valid only for the particular values of
parameters that govern a certain engineering
problem. To generalize the eigenvalue coeffi-
cients obtained by finite element method, the
following second order algebraic equations was
proposed.

Cest:(A0+A10'+A2(12)
+(By+ Bya+ Byahn
+(C0+ C1[2+ Cgaz)nz = C fem (9)

The constants Ay, Ai,+, Ci, C; were deter-

Q2 F=EFMTEZEE =2 M13A H15(2000.3)

mined by the regression technique”. The re-
gression results are summarized in Table 3.
To confirm the validity of the proposed
algebraic equations, the correlation coefficients
defined by Eq. 10 was also calculated.

y= Z{(C/em_ ~Cfem) * (Cest_ E%t)} (10)
\/{Z(C/em_ ~Zj‘fem)z}{z (Cest_ —aest)z}

where C.; denotes the eigenvalue coeffi-
cients estimated by the proposed method and
Cjom, Cey are the mean values of Crm, Co.
respectively. Correlation coefficients calculated
by Ea. 10 equals nearly one(s=1.0) in any
case of Table 3.

Table 3 Regression constants

(a) Critical load, (Eq. 9)

Non-symm. r=1.0
Ay= 9.8856 A= 6.5555 Ay, =-0.2687
By=-0.0021 B;= 0.0197 B,= 0.1325

Cy= 0.0036 C,=-0.0284 C,=-0.0565

Symm. »=1.0
A= 9.8922 A = 8.2362 A,=-0.2031
By=-0.0099 By= 0.0492 B,= 0.1505
Co= 0.0043 C,=-0.0299 C,=-0.0681

(b) Natural frequency, (Eq. 9)

Non-symm. r=1.0
Ay= 10.0895 A= -1.8699 A,= 3.5616
By= -0.2505 By= 8.8225 B,= -6.5527
Co= 0.0542 Ci= -0.4738 C,= 2.9048
Symm. r=1.0
Ag= 11.5904 A,=-13.1274 Ay= 19.6933
By= -2.3131 Bi= 26.0353 B;=-30.0564
Co= 0.6606 C, = -5.0689 G, = 10.9106




Table 4 Axial thrust vs frequency square relation
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(a) Non-symmetrically tapered bar (R= ]i, QZ=(wlo)2)
_QZ
R
=001} ¢=0.2 | a=04 | =06 | =08 | a=1.0| ¢=12 | a=14| a=16| ¢e=18 | «=2.0
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.8002 | 0.7999 | 0.8002 | 0.8004 | 0.8003 | 0.8012 | 0.8009 | 0.8007 | 0.8002 | 0.8010 | 0.8019
(m,n) 0.4 05998 | 0.6001 | 0.6002 | 0.6006 [ 0.6009 | 0.6012 | 0.6014 | 0.6018 | 0.6017 | 0.6019 | 0.6025
={0,2)| 0.6 | 0.3997 | 0.4010 | 0.4006 | 0.4002 | 0.4006 | 0.4017 | 0.4012 | 0.4019 | 0.4021 | 0.4018 | 0.4023
0.8 1 0.1997 | 0.2006 | 0.2005 | 0.2000 | 0.2007 | 0.2010 | 0.2014 | 0.2020 | 0.2004 | 0.2012 | 0.2013
1.0 0.0 0.0007 | -0.0004 | 0.0001 | 0.0004 0.0 0.0003 | 0.0003 | 0.0003 |-0.0018 [ -0.0004
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.8002 | 0.8013 | 0.8011 | 0.8007 | 0.8021 | 0.8028 | 0.8030 | 0.8041 | 0.8050 | 0.8068 | 0.8081
(m.,n) | 0.4] 0.5998 | 0.6004 | 0.6013 | 0.6011 | 0.6034 | 0.6045 | 0.6044 | 0.6067 | 0.6078 | 0.6097 | 0.6130
=(1.3)| 0.6 | 0.3997 | 0.4022 | 0.4016 | 0.4021 | 0.4034 | 0.4046 | 0.4063 | 0.4068 | 0.4090 | 0.4109 | 0.4127
0.8 0.1997 | 0.2001 | 0.2012 | 0.1998 | 0.2028 | 0.2034 | 0.2035 | 0.2050 | 0.2060 | 0.2071 | 0.2097
1.0 0.0 0.0003 | 0.0003 | -0.0012 ] 0.0008 | -0.0006 | -0.0009 | 0.0002 | -0.0010 | 0.0008 | 0.0004
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.8002 | 0.7996 | 0.8019 | 0.8028 | 0.8040 | 0.8056 | 0.8085 | 0.8104 | 0.8120 | 0.8121 | 0.8160
(m.n) 1 0.4] 0.5998 | 0.6011 | 0.6024 | 0.6045 | 0.6065 | 0.6109 | 0.6130 | 0.6159 | 0.6187 | 0.6209 | 0.6245
=(2.4)10.6 | 0.3997 | 0.4001 | 0.4024 | 0.4051 | 0.4069 | 0.4109 | 0.4140 | 0.4166 | 0.4194 | 0.4226 | 0.4262
0.81 0.1997 | 0.1996 | 0.2013 | 0.2033 | 0.2046 | 0.2066 | 0.2099 | 0.2111 | 0.2141 | 0.2151 | 0.2198
1.0 0.0 0.0 -0.0002 | -0.0009 | -0.0007 | 0.0005 | -0.0002 | 0.0006 | -0.0001 | -0.0008 | 0.0018
(b) Symmetrically tapered bar (R Ii’ .Q2=(wi0)2)
QZ
R
=00 =02 | a=04 | =06 | a=08 a=10| ¢=1.2 | a=14 | =16 =18 | a=2.0
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.21 0.8002 | 0.8002 | 0.8001 | 0.8000 | 0.8006 | 0.8001 | 0.8005 | 0.8008 | 0.8016 | 0.8008 | 0.8001
(m,n) | 0.4 0.5898 | 0.6007 | 0.5998 | 0.6002 | 0.6002 | 0.6005 | 0.6006 | 0.6011 | 0.6017 | 0.6006 | 0.6004
=(0.2) | 0.6 | 0.3997 | 0.4000 | 0.3993 | 0.3999 | 0.4011 | 0.4000 | 0.4004 | 0.4007 | 0.4022 | 0.4005 | 0.4003
0.8 0.1997 | 0.1996 | 0.1997 | 0.1995 | 0.2002 | 0.2005 | 0.2007 | 0.2007 | 0.2014 | 0.1996 | 0.2003
1.0 0.0 -0.0002 | 0.0003 | -0.0004 | 0.0002 | 0.0003 0.0 0.0007 | 0.0010 | -0.0008 | 0.0002
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2 0.8002 | 0.7996 | 0.8001 | 0.7999 | 0.8002 | 0.8004 | 0.8008 | 0.8020 | 0.8016 | 0.8006 | 0.8029
(m,n) | 0.4 0.5998 | 0.5987 | 0.6000 | 0.6013 | 0.6014 | 0.6022 | 0.6016 | 0.6029 | 0.6026 | 0.6017 | 0.6039
=(1.3)| 0.6 | 0.3997 | 0.4001 | 0.4005 | 0.4005 | 0.4011 | 0.4016 | 0.4017 | 0.4015 | 0.4026 | 0.4024 | 0.4050
0.8 0.1997 | 0.1998 | 0.2002 | 0.2008 | 0.2001 | 0.2009 | 0.2016 | 0.2009 | 0.2016 | 0.2016 | 0.2023
1.0 0.0 -0.0012 | -0.0002 | 0.0007 | -0.0003 | 0.0004 | 0.0002 | 0.0006 | 0.0006 | -0.0009 | 0.0008
0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.2| 0.8002 | 0.8003 | 0.8007 | 0.8021 | 0.8008 | 0.8004 | 0.8040 | 0.8024 | 0.8043 | 0.8045 | 0.8071
(m,n) | 0.4] 0.5998 | 0.6000 | 0.6006 | 0.6015 | 0.6023 | 0.6024 | 0.6035 | 0.6051 | 0.6061 | 0.6089 | 0.6118
=(2.4)| 0.6} 0.3997 | 0.3999 | 0.3998 | 0.4031 | 0.4014 | 0.4022 | 0.4056 | 0.4052 { 0.4075 | 0.4076 | 0.4136
0.8 0.1997 | 0.2005 | 0.1995 | 0.2019 | 0.2017 | 0.2016 | 0.2040 | 0.2031 | 0.2043 | 0.2066 | 0.2104
1.0 0.0 0.0006 | -0.0006 | 0.0006 | -0.0008 | -0.0012 | 0.0014 | -0.0010 0.0 -0.0005 | 0.0028
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4. Axial Thrust vs Frequency Relation

To obtain the lateral frequencies of the mem-
ber under the variable thrust, P Eq. 7 was
transformed into the following form

(IK1,— RP,[K1,— QUM N4)={0} (11)

where R is the load ratio (R=P/P,). By
changing R from 0.0 to 1.0 (R=00, 0.2, ---, 1.0)
the corresponding frequencies were calculated
by Eq. 8. Table 4. shows square of frequencies
under axial thrusts. As can be seen in this table,
R+ is near unity in any case. (see Fig. 5)
Thus, it can be concluded that Eq. 1 is also
applicable to the tapered members with rela-
tively small error.

0.8 T
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0.4 +

0.2 1

0.0 ——— £
0.00.2 04 06 08 1.0 “

Fig. b Variation of frequency with axial thrust

5. Conclusion

The two eigenvalues (elastic critical load
and natural frequency of lateral vibration) of
sinusoidally tapered members with simply
supported ends were determined by the finite
element method. The parameters considered in
this paper were taper parameter, ¢ and sec-

Q4 s=ZHATETEE =2 H13F HM15(2000.3)

iE

tional property parameter (m, n). The taper
parameter, «, is assumed to change from zero
to two. Sectional property parameter (m, n)
is assumed to have the combination of (0, 2),
(1, 3), and (2, 4). With the increasing values
of the sectional property parameter (m, n),
the natural frequencies of the members showed
decreasing phenomena, which are opposite to
the elastic critical loads of those members.
Two eigenvalue coefficients were represented
by simple algebraic equations. The eigenval-
ue coefficients estimated by proposed algebraic
equations coincides with those obtained by
the finite element method.

To obtain the axial thrust and frequency
relationship, the axial thrust was increased
step by step and the corresponding frequency
was calculated. The axial thrust to elastic
critical load ratio and the square of the fre-
quency to natural frequency ratio can be ap-
proximately represented in any case by a
straight line.

The eigenvalues of sinusoidally tapered
members can not be determined by any of
analytical methods. And so in the future the
proposed algebraic equations based on the
results of finite element method should be
confirmed by some of experimental means.
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