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Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies
by Using Contact Error Vector
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Abstract

Numerical solution for frictional contact problems of nonlinearly deformable bodies having large deformation is
presented. The contact conditions on the possible contact points are expressed by using the contact error vector,
and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration
the solution consists of two steps : The first step is to revise the contact force by using the contact error vector
given hy the previous geometry, and the second step is to compute the displacement and the contact error vector
by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative
scheme to the correct solution is analyzed, and the numerical simulations are performed with a rigid-plastic
membrane and a nonlinear elastic beam.

Keywords : frictional contact, contact error vector, iterative scheme, solution acceleration technique

1. Introduction fields and various numerical techniques have
been developed. Even though penalty methodl)‘Z),

Analysis of frictional contact problems of the method employing Lagrange multiplierS)'4
nonlinearly deformable bodies having large and special techniques of mathematical programs
deformation is important in some engineering and linearized techniques™® are most widely
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used for such frictional contact problems, they
usually involve too complicated formulations
or computational difficulties. For example the
solution of the penalty method is usually sen-
sitive to the penalty value, and the Lagrange
multiplier method accompanies increased number
of equations and additional considerations to
solve the enlarged equations. The computational
difficulties in contact problems occur mainly
because the contact conditions consist of several
inequality constraints. By such reasons, in,wg)
the inequality constraints arising in contact
problems are efficiently replaced by equality
constraints by employing constraint functions
which are always continuous and differentiable.
Then the traditional Lagrange multiplier method
and the penalty method may be easily em-
ployed to enforce the constraints, and efficient
Newton Raphson iterations may be always
applied to solve the global equations involving
the constraints. But, the contact forces should be
reasonably regularized with very small para-
meters in the constraint functions to strictly
enforce the contact conditions.

Especially, in most of the above methods,
frictional condition impose special difficulties on
the solution procedure because the direction
of frictional force as well as stick or slip on
any contact point are not known before the
solution. For example, if the condition that
the frictional force should act in the opposite
direction of the relative sliding is neglected,
then the computed frictional force might have
the same direction as that of the relative sliding.
To the authors best knowledge, some of the
solution techniques in the literature do not
strictly impose such condition, and there is no
guarantee that the correct solution is obtained
by such procedure. Thus, for the frictional contact
analysis of complex bodies having large defor-
mation, it becomes very important to accurately
detect the direction of frictional force as well

306 si=MuTRTSE =23 H13F H35(2000.9)

as stick or slip on any contact point because
they often cannot be reasonably guessed before
the solution.

In this work it is shown that the frictional
contact problems of nonlinearly deformable bodies
having large deformation are solved by the

10 which was suggested for

iterative scheme of
the frictional contact analysis of linear elastic
bodies of small deformation. The contact error
vector is defined by using the contact conditions,
and all the contact conditions are satisfied by
monotonically reducing the contact error vector
toward zero. Thus, contact and separation, di-
rection of frictional force, and stick or slip on
any possible contact point are automatically
detected by reducing the contact error vector
toward zero. Also the condition that the frictional
force should act in the opposite direction of
the relative sliding is strictly imposed. The
basic computing procedure at each iteration
consists of the two steps which are similar to
those of the multiplier update scheme (e.g..").
The first step is to compute the contact force
by using the contact error vector determined
on the geometry of the previous iteration and
the second step is to compute the contact error
vector after solving the global equilibrium equ-
ation with the given contact force. Moreover,
even though the basic iterative scheme of this
work (i.e., iterative scheme of this work with
n=1) is similar to the multiplier update scheme
(or the augmented Lagrange multiplier method),
the convergence speed of the iterative scheme
of this work is drastically improved by using
the acceleration technigue. In this work the
basic computing procedures to solve the frictional
contact problems are presented, the convert-
gence of the iterative method is analyzed,
and the numerical simulations are performed
to demonstrate the feasibility of the method
to the problems of various constitutive equ-
ations.



2. Equations of Equilibrium and Contact
Condition

In this work, two-dimensional problems of
nonlinearly deformable bodies are considered
and the standard finite element techniques
are employed for the equation of equilibrium.
Also, for the simplicity of writing, a deformable
body is assumed to make contact with a rigid
body. For the formulation of the equation of
equilibrium, the contact force is assumed to
be known before the solution (i.e., the contact
force is treated as a prescribed external force
in the equation of equilibrium, and its correct
value is determined by the iterative scheme
explained later). Then, as illustrated in Appen-
dices A and B, by the standard finite element
techniques, the equation of equilibrium of the
deformable body generally takes the following
form if incremental displacement is used:

Al =1+ Tp (1)

or the following form if total displacement is
used:

A(w)=f+Tp (2)

where A denotes the vector of the internal
forces in the equation of equilibrium, u is the
vector of the nodal displacements, du is the
vector of the incremental nodal displacements, f
is the vector of the known external forces
(here, f is independent from the geometry of
the contact surface), p is the vector of the un-
known contact forces consisting of the normal
and tangential components. Also, T is the matrix
transforming the contact forces described in
terms of the normal and tangential compo-
nents to the nodal forces of FEM. As an example,
if the body is modeled by using beam elements
as shown in Fig. 1, T takes the following form:

Initial Deformed

(Undeformed) (stop t+4t)

Fig. 1 Possible contact points between beam and
rigid body on the configuration of step t+4t
and on the initial configuration.

—cos®, sin®,

—sin®; —cos®;
h
T= — cos O, sin @,
—sin®; — cos@;

h 0

(3)
where @; is the angle denoting the normal

direction at the ith contact point and h is
the distance between the surface of the beam
and the beam center line as shown in Fig. 1. In
Fig. 1, 1" denotes the possible contact point
on the beam, i T denotes the contact pairing
point on the rigid body, and 1% 4 and 1'% 4
denotes the corresponding contact points on
the initial configuration. A typical example of
Eq. (1) is an equilibrium equation of a rigid-
plastic membrane shown in Appendix A, and
a typical example of Eq. (2) is an equilibrium
equation of a nonlinear elastic beam shown in
Appendix B, and Eqs. (1) and (2) may be
solved by the Newton Raphson method if the
values of T and p are given before solving
them. For example, at time step t+4t, Eq. (1)
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may be solved by the following Newton Raphson
iterations if the values of T and p are given
before solving Eq. (1):

( 9A(Ju) )”"‘5 o+ 4t
j

adu i+l
— Trt4 pt+At_|_ ft+ﬂt_( A(4 u))}“t
(4)
gt =duit "+ ouilf (5)

where t+ 4t denotes the time step and j
denotes the iteration. Even though this work
does not deal with a dynamic problem, as the
frictional force and the solution of the equili-
brium equation of nonlinearly deformable body
generally depend on the deformation process,
the time step is used to denote the loading
step of the external forces. In this work, at each
time step, after giving the value of contact
force p by the iterative scheme which will be
explained in the next section, Eq. (1) or (2)
is solved and displacement u is computed.
Whenever displacement u is computed at each
iteration of each time step, the contact pairing
points on the rigid body are determined by
drawing the normal lines from the nodal
points of a deformable body as shown in Fig. 1
(it is quite natural that the normal direction
should be determined on the current configu-
ration). Then, the normal direction, 7, and the
tangential direction, &,are determined as shown
in Fig. 1, and transformation matrix T is
computed. In Fig. 1, point i denotes the nodal
point of the beam, 177" denotes the possible
contact point on the beam surface at time
step t+4t, and i"®* 499 Jenotes the contact
pairing point on the rigid body at time step
t+ 4t, respectively.

In this work the displacements of the possible
contact points on the surface of the deformable

body is denoted as u. For example, u consists
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of the displacements of the nodal points on
the possible contact surface if the body is
modeled by isoparametric plane-stress elements,
and u congists of the displacements of the
surface points (e.g., point FRRET™ Fig. 1) if
the body is modeled by beam elements. In
Fig. 1. point 194 4 and i" %4, denote the

e ey ‘. . < t+ 4t o (t+ 4t
initial positions of points 1 and i )

on the initial undeformed configuration, res-
pectively. Also, in Fig. 1, dOi,H 4t denote the

initial gap between points 1044 and i’ 0

measured on the initial undeformed configu-

ration. If possible contact point 17 on the

surface of the deformable body makes real
contact with contact pairing point i’ a9 o
the rigid body at time t+4t, then the two points
should share the same position at time step

t+ 4t, and thus the following relation holds:

uit - w it = d ) =0 (6)
where u{*?" and wit?" denote the displace-
ments of points 1Y and i “Y9Y at time

step t+ 4t, respectively. In this work, displace-
ment of the rigid body, w, is prescribed
before the solution. Even though Eq. (6) does
not hold if possible contact point i “* does
not really contact with contact pairing point
i T4 gt time step t+4t (i.e. if the two
points are separated at time step t+ 4t), the

tangential component of Eq. (6) is still almost
t+ 4t

valid at time step t+ 4t if point i makes
the contact at the next time step and if the
external load increment between the consecutive
time steps is small.

For the purpose of analysis, on the possible
contact surface, vector s is defined as

VAL TSt At t+ At 40

Siz T Uiy in diy e+ at

e T t+ 4t 10

Sig T = Uil —wig© —die (N



where 7 and £ denote the normal and tan-
gential directions shown in Fig. 1. Then, by
using (6) of time step t and (7), if contact is
made on point 1i'T? at time step t+4t, the
following is obtained:

sifdt=gutl?—awif" (8)

Thus, by definitions (6) and (7)., s;, denotes
the penetration and s;¢ denotes the incremental
relative slip between contact point i and contact
pairing point i" at the time step, respectively.
Especially, by the above definition, the direction
of s;¢ is the same as that of the relative
tangential velocity between points i and i’.

Then, at any time step, by employing the
Coulomb friction law, the contact condition

on possible contact point 1 may be written as

ir =0
s, <0
pi, =0 if s;,<0
sie =0 if Ipiel< olpiyl
S;e =— B pje with some value of 8(8>0)
if |piel= 0lpi 150 (9)

where p;, and Di¢ denote the normal and tan-
gential components of the contact force acting
on point i, and » is the friction coefficient.
In the above the third condition means that
the contact pressure is zero on the separated
poiont, and the fourth condition means that
there is no sliding if the frictional force is
smaller than the critical force of the Coulomb
friction law. From the above contact condition,
at any time step, for the iterative scheme of
this work, contact error vector v is defined as

Vip = 8iy if pl-,,<0 or if Siy >0
=0 if p;, 20 and s;, <0

Vig =8¢ if Ipiel<ryoor
if {sign(p;¢)=sign(s;¢) and 7 ;>0}
= if {Ip;el= r; and sign(p;:)=—sign(s;¢)}
or if 7,<0 (10)

where 7; is the maximum frictional force at
point 1 defined as

Ti:UiDin| (11)

The above contact error vector is the same as
that used in (10), and contact condition (9)
may be written as

DMSO
Ipiel=
v=0 (12)

3. Solution Method

3.1 Iterative scheme

This work uses the iterative scheme similar
to the multiplier update scheme (or augmented
Lagrange multiplier method), and the compu-
tation at each iteration consists of the two
major steps: the first step is to compute the
frictional contact force by using the contact
error vector of the previous iteration and the
second step is to compute the contact error
vector of the current iteration. As displacement
u is determined by solving Eq. (1) or (2) if
contact force p and transformation matrix T
are given, contact condition (9) is automatically
satisfied on the possible contact points by the
solution of Eq. (1) or (2) if the correct value
of contact force p and the correct value of
transformation matrix T are given before solving
Eq. (1) or (2). In this work, at time step t+4t,
the correct value of contact force p'*?' is
determined by monotonically reducing contact
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error vector vi™4" by using the following ite-
rative scheme:

—t+dtm _ t+4tm—1

— Mn vt+dt.m*1/HCpHm

pg:dt.mz min(o’ggzdt,m
D §,§“""“=sign(B?}"""‘)min(] Sggm,m T §+ At)
lf Vitg-dt.m—lzsitgdt,mfl
=Sign(p§;‘”’m)z E+A(
if viZamTl=0+efim (13)

In the above iterative scheme, which is the
same as that used in (10), m is the iteration
counter, @ is a constant which will be explained
in the following sections, n is the acceleration
index shown in Appendix C, M, and C’ are
matrices shown in {10) and are also explained

t+4t,m—1 t+dt,m-1

in Appendix C, Also, s and v

t+ 4t t+ 4t

denote vectors s and v computed by (7)
and (10) using the solution of Eq. (1) or (2)

t+dt,m—1

corresponding to contact force p . Even

though !"“" in (13) should be computed as

»|piF?%™| by (11), if any convergence problem

occurs during the iterations or if the accele-
ration technique is employed (i.e., n=2), «{**

should be approximately computed by
riT = o|pil (14)

where p{, denotes the approximate value of

piy“ and should be kept as a constant during

the iterations if the acceleration technique is
employed. In the practical computation, by
employing p:, determined at step t as pj,,
an approximate solution of step t+ 4t may be
obtained by using iterative scheme (13). And
a more accurate solution may be obtained if
additional iterations are performed by employing
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Diy
of step t+ 4t as pi,. Even though (11) is not
strictly satisfied by such technique, this kind

2t JQetermined in the approximate solution

of error becomes small if the external load
increment between the consecutive time steps
is small.

In this work, at each iteration, the dis-
placement is computed by solving the global
equilibrium equation (1) or (2) with the contact
force given by iterative scheme (13). Then, at
each iteration, the positions of the possible
contact pairing points on the rigid body are
determined by drawing the normal lines from
the nodal points of the deformable body as
shown in Fig. 1. and transformation matrix T
is computed. Finally, at each iteration, contact
error vector (10) is computed by using the
contact force and the displacement obtained
above. Such procedure of the solution is
similar to that of multiplier update scheme
(e.g., (4, 11)) in the sense that only displace-
ment is computed by solving equilibrium Eq.
(1) or (2) and that the contact force is updated
by (13). Also, as matrix M, may be regarded
to be a unit diagonal matrix if n is one,
iterative scheme (13) becomes the stationary
Richardson method (e.g., [12)) if n is one, p is
taken to be p, v is taken to be s, and Eq. (1)
consists of the linear equations of displacements.
But it is worth to note that, even though the
iterative scheme of this work is similar to the
multiplier update scheme (or augmented Lag-
range multiplier method), the convergence
speed of the iterative scheme of this work is
drastically improved by using matrix M, as

shown in (10].

3.2 Analysis of convergence of the iterative
scheme

In this section the monotone reduction of
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contact error vector (10) at time step t+ 4t
by iterative scheme (13) is examined. As the
present method is essentially the same as
that used in,'"
given here, and superscript t+ 4t is eliminated

only brief explanations are

for the sake of simplicity.
By (1) or (2), (7), (13), and (14), the following
conditions can be always satisfied on possible

contact point 1 by taking a small value of @
in iterative scheme (13):

if ply '<0, then pJ, =0
if s™71<0, then s& <0
if p7'>0, then p: =0
if p%'<0, then pft=0
if sB7150, then sf>(
if s{271<0, then sft <0

if |pi <z then |pR|<t; (15)

where superscripts m-1 and m denote the
values corresponding to contact forces p™ !
and p™, respectively. For example, si, denotes
s;, computed by (7) using the solution of Eq.
(1) or (2) corresponding to contact force p™.
Then, assuming a small value of a, from
(13) and (15), the following is obt: ned:

p"—p" == M,v" IICll. (16)

From (7), when p™—p™ ' is small in iterative
scheme (13), the change of s is related to the

change of u by the following:
s"—s" 2z u®— ™! (17

When p™—p™ ! is small i iterative scheme
(13), the corresponding variation of the dis-
placement is also small, and the following is
obtained because the work is independent of
the coordinates:

o714 -

- R T (am - (18)

where 8 denotes the small change, T denotes
the average value of transformation matrix T
employed in Eq. (1) or (2) between iterations
m and m-1, and u denotes the nodal displace-
ments associated with the possible contact
surface (i.e., vector u is a part of vector u).
From (4) (or from the equivalent equation
corresponding to (2)), when contact force p
changes by iterative scheme (13), the following
relation is obtained:

’l‘im_’{'lmflzKAl-T‘(pm_pm-l) (19)

where K™! is a submatrix of the inverse of
the tangential stiffness matrix of equilibrium

equation (1) or (2). Then, by assuming a
small value of @ in iterative scheme (13),
from (17), (18) and (19), the following is
obtained:

Sm_sm-lzc(pm__pm—l) (20)

where C is the matrix defined as

C~T'K!IT (21)

As the above relations (15)~(21) are obtained
with the assumption of small change in contact
force p, t\ey are valid if the value of a v'T4"m7!
is small in iterative scheme (13). Thus, in
practice, matrix C may be regarded as sym-
metric and positive definite because ¢ may
be reduced to a smaller value whenever required
in the computation as shown in Fig. 2 (here, the
tangential stiffness matrix of the equilibrium
equation is assumed to be positive definite
because this assumption is also required for
the convergence of Newton Raphson iterations of
Eas. (1) and (2) even without contact condition).
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Even though matrix C defined ahove changes
as the deformation proceeds nonlinearly, the
change of matrix C between the consecutive
iterations is not large when contact error
vector is small in iterative scheme (13), and
thus the acceleration technique of {10) can be
applied for an efficient computation in such
iteration steps.

Multiplying the both sides of (20) by E(v™ "}
defined by (C.2), and using (16) and matrix C’
defined by (C.1), the following is obtained:

E(v" Hs"— v

x—aC M, v" '/IC (22)

By using matrix C, defined by (C.3) and using

(C.8), equation (22) may be rearranged as
E(v" H)s"~(I-a C)v" ' (23)

As matrix C is positive definite, after excluding
the rows and columns whose corresponding
components of vector v are identically defined
as zeroes by (10), matrix C, becomes positive
definite. When (15) is satisfied by using small
@ in iterative scheme (13), from (10), the compo-
nent of v™ is zero as long as the corresponding
component of v™~! is zero. Thus, using (C.2),
the following is obtained:

vl =IE(v™s™l,<IE(v™ )s"l, (24)
From (23) and (24), the inequality
v <lv™ Mty (25)

is obtained if the following condition is satisfied:

(26)
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where (An)mx 18 the maximum eigenvalue of
matrix C,. Thus contact error (10) can be mo-
notonically reduced toward zero by iterative
scheme (13) and contact condition (12) can
be satisfied by iterative scheme (13). Also, it
is worth to note that, as the contact error
vector is monotonically reduced toward zero
by the iterative scheme, the correct contact
pairing points and the correct transformation
matrix T are computed by drawing the normal
lines on the possible contact surface as shown
in Fig. 1 at each iteration.

3.3 Acceleration technique

Iteration matrix (I— e C,) in (23) has the

minimum spectral radius

(An)max—(/ln)min

00 @ €= ) e F Ao @D
when the value of ¢ is given by
_ 2
S 9778 S o7 (28)

where A, denotes the eigenvalue of matrix C,.
As (A) max/ (A ) min decreases rapidly toward 1
as the value of n increases, the convergence
speed of iteration scheme (13) may be impro-

: 10
ved as the value of n increases.'”

3.4 Computer implementation

Even though ¢ in iterative scheme (13) should
be very small in some steps if condition (15)
should be strictly satisfied, in the practical
computation, condition (15) need not be satisfied
as long as contact error vector is reduced by
iterative scheme (13). Thus, for the computa-
tion, by using (28), the optimum value of «
in iterative scheme (13) is given by
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Fig. 2 Computing procedure at time step t+ 4t
¢=—2— (29)

where @, and &, are computed by the defini-
tions in Appendix C (but the mth iteration
should be repeated with a reduced value of «
whenever llv™l, does not become smaller than
[lv™~Ul; as shown in Fig. 2). For an efficient
computation, ¢, in (C.6) should be close to the
minimum positive eigenvalue of matrix C,. In
this work, when &, is required to be computed,
n and ¢ are set to be 1 and 1.99, respectively,
in iterative scheme (13), and ¢, is estimated
by the initial iterations retween m=I and
m=J (e.g., =5, J=2) by the following way:

— w1, ) (30)
v P

In the above the initial (I-2) iterations are
not considered in estimating &, because the
solutions obtained in the initial few iterations
may be different from the correct solution by
relatively large amount. The values of I and
J are not critical in computing, and they may
be selected by the user without any difficulty
(e.g.. I=3, J=10).

The major tasks of this work are to compute
contact force p and displacement u at each
time step by solving equilibrium equation (1) or
{2) with contact condition (9), and the computing
procedure at time step t+ 4t is shown in Fig. 2.

4. Numerical Example

4.1 Sheet stretching involving large plastic
deformation

In this example a sheet stretching problem
of metal forming is solved. The sheet is assumed
to be rigid-plastic membrane with the equations
of equilibrium shown in Appendix A, and the
punch and die are treated as rigid bodies.
The initial shape of the model is shown in
Fig. 3, and the punch moves downward for
the sheet stretching operation. This problem,
which is shown in {13], is solved here with the
same data used in [13]). The data of the geo-
metries of the punch and die shown in Fig. 3
are given as R,=50.8mm, Ry=6.35mm, and
Cq=Ry=59.18mm, respectively. Also, the thick-
ness of the sheet is 1mm, the both ends of
the sheet are fixed, and the plane strain
condition is assumed along the width direction.
The values of the parameters of the rigid-
plastic equations shown in Appendix A are
given as r=1.0, M=2.0, H=58MPa, a,=0.0001,
and n=0.216, respectively. For the computation,
the right half of the sheet was divided into
30 elements, friction coefficient was assumed

EFMTREES =28 H13 M35(2000.9) 313
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Fig. 3 Punch, die, and sheet metal before forming
operation
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Fig. 4 Deformed sheet geometries at various punch
heights
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to be 0.15, and the punch was assumed to
move downward by 1mm at each time step.

As explained in the previous section, confact
condition (9) is enforced by using contact error
vector (10), and Eq. (1) is solved by the Newton
Raphson method with contact force p given
by (13). The deformed geometries of the sheet
at various punch positions are shown in Fig. 4
which indicates that the contact conditions
are properly enforced. The computed distribution
of strain in the membrane when the punch
travels 30mm is shown in Fig. 5 which agrees
well with that of [13).

4.2 Elastic beam bent around a rigid
circular cylinder

In this example an elastic beam is bent
around a rigid cylinder as shown in Fig. 6.
This model is the same as that solved in [5].
Young's modulus of the beam is 210,000kg/cm’,
Poisson’s ratio of the beam is 0.3, force F is
500kg, and the friction coefficient is 0.2, res-
pectively. As the equilibrium equations of the
beam subjected to large deformation are generally
very complicated, relatively simplified equilibrium
equations in [(14) are employed here. The
internal forces and the corresponding tangential
stiffness matrix of the Timoshenko beam of
moderately large deformation shown in (14)
are summarized in Appendix B.

The right half of the beam was modeled by 40
beam elements using the three-node shape
functions as shown in Appendix B, and contact
forces were assumed to exist on the both end-
nodes of each element. The vertical load F
acting on the right upper corner of the beam
was applied in 20 equal increments.

The computed contact pressure distributions
are shown in Figs. 7 and & with the deformed
shape of the beam. Here, the stress was com-
puted by dividing the contact force by the
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Fig. 7 Normal contact stress on the deformed
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corresponding area of the beam. Even though
the normal contact stress in Fig. 7 is similar
to that of, (5) the fictional stress in Fig. 8 is
different from that of {5) {especially, the fictional
stress changes its direction). Such difference
seems to occur because the present work em-
ploys the incremental friction law explained
in section 2. In the present solution, when
load F is increased, the left beam elements
in Fig. 8 which have maintained contact with
the cylinder from the previous time steps move
incrementally to the right because tension
develops in these elements due to the rightward
frictional force acting on the new contact
surface on the right of the beam which move

>

60

-60

~120

o (kgfom?)

Fig. 8 Frictional contact stress on the deformed
shape of the beam
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Fig. 9 Load-end deflection relations of the beam

to the left by bending deformation (note that
almost no additional bending deformation occurs
on the left elements which have maintained
contact with the cylinder from the previous
time steps), As the frictional force takes the
opposite direction of the incremental relative
slip, the leftward frictional forces develop on
the left beam elements shown in Fig. 8. And
the displacements of the end point of the beam
are shown in Fig. 9. The slight difference
between Fig. 9 and the corresponding solution
of (5] seems to occur because the present
work employs the relatively simple equilibrium
equations of the beam.
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5. Concluding Remarks

Frictional contact problems of nonlinearly
deformable bodies have been solved by using
the iterative scheme and the contact error
vector. At each iteration the contact force has
been computed by using the contact error
vector, and the global equilibrium equation
has been solved with the given contact force.
Contact conditions have been enforced by
reducing the contact error vector toward zero,
and thus the correct contact points and the
correct directions of the frictional forces have
been automatically computed without any pre-
vious guess before the solution. The convergence
of the iterative scheme has been analyzed,
and the applicability of the method has been
demonstrated by the numerical experiments
using rigid-plastic membrane and nonlinear
elastic beam.

References

1. Oden, J.T. and Pires, E. B., "Algorithms
and numerical results for finite element
approximations of contact problems with
non-classical frictional laws”, Computers
and Structures, 19, 1984, pp.137~147

2. Cheng, J.-H. and Kikuchi, N.,"An analysis
of metal forming processes using large
deformation elastic-plastic formulations.”,
Computer Methods in Applied Mechanics
and Engineering, 49, 1985, pp.71~108

3. Chaudhary, A. and Bathe, K.J., "A solution
method for static and dynamic analysis of
three~-dimensional contact problems with
friction”, Computers and Structures, 24,
1986, pp.855~873

4. Laursen, T.A. and Simo, J.C., "Algorithmic
symmetrization of Coulomb frictional pro-
blems using augmented Lagrangians’, Com~

316 s=uuuzBest =23 13 M35(2000.9)

puter Methods in Applied Mechanics and
Engineering, 108, 1993, pp.133~146
5. Sun, S.M., Natori, M.C. and Park, K.C.,
“A computational procedure for flexible beams
with frictional contact constraints’, Inter-
national Journal for Numerical Methods in
Engineering, 36, 1993, pp.3781~3800
6. Klarbring, A. and Bjorkman, G., "Solution
of large displacement contact problems with
friction using Newton's method for generalized
equations”, International Journal for Nume-
rical Methods in Engineering, 34, 1992, pp.
249~269
7. Bathe, K.J., Finite Element Procedures, Pren-
tice Hall, Englewood Cliffs, NJ, 1996, pp.
622-628
8. Eterovic, A.L. and Bathe, K.J., "On the
treatment of inequality constraints arising
form contact conditions in finite element
analysis”, Computers and Structures, 40,
1991, pp.203~209
9. Bathe, K.J. and P.A. Bouzinov, "On the cons-
traint function method for contact problems’,
Computers and Structures, 64, 1997, pp.
1069~1085
10. Lee. K., "An efficient solution method for
frictional contact problems”, Computers and
Structures, 32, 1989, pp.1~11
11. Luenberger, D.G., Linear and Nonlinear
Programming, Addison-Wesley, Reading,
Massachusetts, 1984, pp.436~437
12. Young, D.M., Jterative Solution of Large
Linear Systems, Academic Press, New York,
1971, pp.74
13. Choudhary, S. and Lee, J.K., "Dynamic
plane strain finite element simulation of
industrial sheet-metal forming processes”,
International Journal of Mechanical Science,
36, 1994, pp.189~207
14. Crisfield, M.A., Non-linear Finite Element
Analysis of Selids and Structures, Vol. 1,



7% - g

rﬁ

John Wiley and Sons, Chichester, 1991, for sheet metal forming analysis”, Inter-

pp.208~209 national Journal of Mechanical Science,
15. Germain, Y., Chung, K. and Wagoner, R.H., 31, 1989, pp.1~24

"A rigid-viscoplastic finite element program (H4YX 0 1999, 8. 30)

RMATATRSE =28 M13F M35(2000.9) 317



A% oR AHE 8T MNY YA BHBEE #4

Appendix A : Equations of Equilibrium of a
Rigid-Plastic Membrane

In the numerical example of this work the
rigid-plastic equations of membrane used for
sheet forming analysis in [15] are employed,
and are briefly summarized here. Following
the procedures of (15] the hardening law,
effective stress o, and incremental effective
strain 4 e are expressed as

o=H(e+ay)" (A1)

o=[2(1+n] '™
x[|01+02|M+(1+2r)|01—GZIM]I/M (A.2)
M/(M-1)

Ae=0.5[201+0]"™M | 46+ 4&

- - - (M-1)/M
Fl1+2] 1/(M+l)[ e~ 45 M/(M 1>] M-1
(A.3)

where r and M are the normal anisotropy
parameter and the index describing the shape
of the yield surface, respectively. And incre-

mental effective strain 4e is computed by

4 &= 0.5[201+1) 1™ | In(4,d)| WMV

+ [1+2r] THO1EY

P M/(M—1)q (M=1D/M
ln(/l‘l)/ ]
2

(A.4)

where 4; and 4, are principal stretch ratios
of the membrane. And the equation of equi-
librium on nodal point k is obtained as

- 34 . _
fa T dv=qyx (A.5)

where du, and g; are the incremental dis-

placement and the force vectors on nodal
point k, and the integration is performed on
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the related volume. When the external force
consists of the prescribed external force and
the unknown contact force, by following the
procedures of {15}, Eq. (A.5) may be written
in the form of Eq. (1).

Appendix B : Equations of Equilibrium of an
Elastic Beam Having Moderately
Large Displacement

The equilibrium equations of Timoshenko
beam of moderately large-deflection shown in
(14), which are employed in the numerical
example of this work, are summarized here. From
a typical beam element whose axial and
transversal directions are denoted by x and z,
respectively, normal strain e, is assumed to be

_du  1(dw\?_ d’w
&= dX+2<dX) dez (Bl)

where u and w are the axial and transversal
displacements of the beam center line. In each
element, displacements of the beam center
line u and w and rotation of the cross—section
6 are interpolated by the following:

u=h"u, w=h"w, 6=h"4 (B.2)

where

h'= %{1~¢,1+ 0,2(1— ¢}
u'= (uy,uy, 4uy), wl=(w,,wg, 4w,),

0T=(6,,6,586, (B.3)

In the above u, w, and @ denote the nodal
values and ¢ denotes the coordinate in an
element having three nodes. And axial force
N, shear force @, and bending moment M are
given as



N=EAZ = EA{bTu + %(bTW)z}
Q=k'GAMDB w+hT9)

M=EIb' ¢ (B.4)
where
bT=(=1,1, —1¢) (B.5)

After applying the principle of virtual work,
the corresponding tangential stiffness matrix
is given as

Ko Kiw 0
I(wu KWW Kw0
O Kaw KBG

K= (B.6)

where

K. = [EAbb'dx
K.,= [ EA(bTw)bb dx
Kyw= [{EA(b"w)*bb"+GAbb” + Nbb}dx
Kyo— [GAbh"dx
K,,= [(EIbb"+GARh )dx
(B.7)

Appendix C : Matrices for Solution Acceleration

For efficient computations of the iterative
scheme, the acceleration technique shown in
(10} is employed in this work, and only the
necessary matrices are outlined here. For the
solution acceleration, from matrix C defined
by (21), matrix C” is defined as

o
_\I_‘
I
i)
ok
o,

C'=E(v" HCE(v™" ™) (c.1)
where E(v™™!) is a diagonal matrix defined as

E(v™" Hy=1 if v/""!is not identically
defined as zero
=0 if vI"! is identically
defined as zero (C.2)

In the above, v™ ! denotes the contact error

vector employed in (13), and matrix C is
symmetric and positive definite. From matrix

C’, a series of matrices, C,, are defined as

C.=C/lIICls if n=1
=C,_ i (b,E=C,_)) if n=2 (C.3)

where

bn= En*1+ W p—) (n22) (04)

wy,=1 if n=]

=(b)%4 if n=2 (C.5)

e,= €, if n=1
=¢c, 1w, if n=2 (C.6)
In the above, n is an integer number and ¢ ;
is the assumed minimum positive eigenvalue

of matrix C,. And matrix M, is defined as

M,=E if n=1
=0b,E-C,_)M,_, if n>2 (C.7)
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