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Nonlinear Structural Safety Assessment under
Dynamic Excitation Using SFEM
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Abstract

To assess the safety of nonlinear steel frame structures subjected to short duration dynamic loadings,
especially seismic loading, a nonlinear time domain reliability analysis procedure is proposed in the context of the
stochastic finite element concept. In the proposed algorithm, the finite element formulation is combined with
concepts of the response surface method, the first order reliability method, and the iterative linear interpolation
scheme. This leads to the stochastic finite element concept. Actual earthquake loading time-histories are used to
excite structures, enabling a realistic representation of the loading conditions. The assumed stress-based finite
element formulation is used to increase its efficiency. The algorithm also has the potential to evaluate the risk
associated with any linear or nonlinear structure that can be represented by a finite element algorithm subjected
to seismic loading or any short duration dynamic loading. The algorithm is explained with help of an example
and verified using the Monte Carlo simulation technique.

Keywords - stochastic finite element method, seismic loading, time-history, frequency content, assumed
stress—based FEM, response surface method
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1. Introduction

The safety of a structural system depends
on the loads or the load combinations to which
will be subjected during its lifetime and the
load-carrying capacity (or resistance) of the
structure or its components. The presence of
uncertainties in the load and parameters related
to load-carrying capacity is well known in the
profession and the absolute assurance of the
safety of a structural system is not possible.
Therefore, in codified approaches, load and
resistance factors are used to address the un-
certainties, leading the reliability-based design.
In spite of significant advances in analytical
capabilities and design philosophies, the realistic
safety assessment of structures under short
duration dynamic loadings has yet to be add-
ressed comprehensively. The subject of this paper
is reliability assessment of such structures with
realistic modeling of dynamic loadings and
resistance-related parameters.

Most structures will show nonlinear behavior
just before failure. Thus, in the estimation of
failure probability, the nonlinear behavior of
structures cannot be avoided. To evaluate the
safety of complicated structures subjected to
time-variant loadings in the presence of different
sources of nonlinearity, a finite element method
(FEM) -based formulation is desirable. In this
way, different factors (support and connection
conditions, geometric and material conditions,
etc.) and the nonlinearity associated with them
can be easily incorporated. It is also the first
step in a conventional deterministic analysis.
The use of FEM in the context of uncertainty
leads to the concept of stochastic finite element
method (SFEM).

Time-variant loadings, i.e., seismic and other
short-duration loadings, cause a significant
amount of damage to structures and are very
unpredictable. Therefore, the incorporation of
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uncertainties in the time history analysis is
very desirable for the reliability analysis of
nonlinear structures subjected to seismic loadings.
The class of Monte Carlo simulation method
(MCS) can be used for this purpose. However,
it may be too costly and cumbersome for the
simulation of nonlinear time-history analysis of
dynamic systems. The stochastic finite element
method (SFEM) for static problems as proposed
by Haldar and Gao” has been proved to be very
elegant, economical, and accurate. Although,
using this algorithm, the reliability can be
estimated at every time increment of the
acceleration of a seismic loading, it will be
very difficult and be too time-consuming to
apply the algorithm to the problem under
consideration. The response surface method (RSM)
has the potential to consider the uncertainty in
the short duration dynamic load and resistance-
related parameters without compromising the
efficiency and accuracy to a great extent. It is
the goal of this study to develop such a hybrid
algorithm by combining the RSM, the FEM,
and the first order reliability method (FORM).

2. Assumed Stress-based FEM for Dynamic
Analysis

The efficiency of the deterministic finite
element method is important in the implemen-
tation of SFEM since the analysis is based on
tracking the uncertainty propagating through
the steps of deterministic analysis. It has
P39 that the
assumed stress-based finite element method

been reported in the literature

has many advantages over the displacement-
based method, particularly for nonlinear analysis
of large deformation problems. In the assumed
stress-based finite element method, the tangent
stiffness can be expressed in explicit form, the
stresses of an element can be obtained directly,
fewer elements are required to describe a large
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deformation configuration, and integration is
not required to obtain the tangent stiffness.

Different sources of nonlinearity can be in-
corporated without losing the basic simplicity.
It is very accurate and efficient in analyzing
nonlinear responses. Some of its essential
features in the context of dynamic problems
are discussed in the following sections.

2.1 Dynamic Governing Equation

The nonlinear dynamic equilibrium equation
can be expressed at time t+Af as

M 1+A/1'j(k)+tc r+A1]')(k)+rK(k) f+A/AD(k)
_1+Ar (k) 1+ Ay (k=1 r+Af Ty (k)
=""FY - "TRYTY -M TYDY (1)

where 'K is the global tangent stiffness matrix

of the k™ iteration at time ¢ ““AD™ is the

incremental displacement vector of the k™

1+4r F(k)

iteration at time t+Aft, is the external

load vector of the k™ iteration at time t+ A,

“YR%D is the internal force vector of the
(k-1™ iteration at time t+At, M is the mass
matrix, ‘C is the viscous damping coefficient
matrix at time ¢, and "“D¥ is the seismic
ground acceleration vector of the k™ iteration
at time t+Af.

The procedures to estimate all these parameter
matrices are discussed briefly here. First, for
the mass matrix M, either a lumped mass
matrix or consistent mass matrix can be used.
Second, using the assumed stress method, the
tangent stiffness matrix and the internal force
vector for each beam-column element at the
k™ iteration at a given time ¢ can be expressed
explicitly depending on the existence of the
material nonlinearity. They are not provided
in here since they are widely available in the
294 " Rinally, the damping matrix
‘C in Eq. (1) is considered to be viscous in

literature

this study. Using the equivalent viscous dam-
ping varying between 0.1% to 7% of the critical
damping”, the effect of non-yielding energy
dissipation is incorporated into the mathe-
matical formulation. This simplified mathematical
model and representation of the viscous damping
may effect greatly on the seismic responses.
In this study, a modified Rayleigh damping is
used and expressed as follows

'C=oM+7y'K+EK, (2)

where 'K is the tangent stiffness matrix, Ko
is the initial stiffness matrix, and «, v, and
& are proportional constants which can be
evaluated from the natural frequencies of the
structure.

2.2 Numerical Procedures

Newmark's direct integration method is used
to solve the nonlinear governing equation in this
study. In this method, the governing equation,
Eq. (1), can be expressed as

1 1+At (k) __t+Ar k) t+A (A-D
K, ™AD" ="YF TR (3)
where
AL g (RY A (kL) | A k)
F =""F; " +"¥AF, (4)

and "“AD"™ is the increment of the relative
displacement vector for the free degrees of
freedom. ‘Ko is the dynamic tangent stiffness
matrix and can be shown to be

'K,=fM+f,'K (5)

THYEL and *MAFY are the modified external
force and its incremental vector, respectively.
The modified external force vector can be

re
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expressed as
t+A:F;k-l)=r+AIF(k—()+I+AIPU<—|) _M 1+At]");k—1) (6)

and "“R“" is the internal force vector of the
system. The term "“P%" in Eq. (6) is the
modified force vector contributed by the dis-
placement, velocity and acceleration at time ¢
and displacement at time t+At¢, and can be
written as

AL p (k) =le] ‘D+f3'i)+f4 :i')_fl r+ArD(k—|)]
YK D £ D D f D] ()

The incremental external force term EARD
can be shown to be

r+A1AF1()k)=1+AtAF(k) -M 1+ArAl“);k) (8)

The coefficients, f's, are constants and can be
evaluated” in terms of n. @, B, v and At as

=[3Altz""1loi AL R R L

BAr’ BAt Bar B
= _I__ _I__i :ﬂg
f;—(zﬁ 1]+T\<>{2B n}m’ 1 BA

fs Zﬂl"% 55 =(n—7—vjm

1 o
£ n

5

B 2B 9)

Eq. (3) now can be solved by the modified
Newton-Raphson method. Once the displace-
ments are obtained, the member forces can
be calculated accordingly.

3. Uncertainties in Time-variant Dynamic
and Seismic Loadings

Considering uncertainties in time-variant
dynamic loading is very challenging. For the
clarity of discussion, it is important to diffe-
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rentiate between the short and long duration
loadings. For long duration loadings, the works of
Bucher, Chen, and Schiller” and Yao and Wen®
are noteworthy. Bucher, Chen, and Schiller”
converted the time-variant problem to a time-
invariant problem by applying the lifetime maxi-
mum effect of combined load processes after
evaluating the limit state function. Bucher and
Bourgund” and Rajashekhar and Ellingwood'”
considered short duration loadings. They examined
the same dynamic problem, which is a non-
linear single degree of freedom (SDOF) oscillator
with random system parameters subjected to a
rectangular load pulse with random duration
and amplitude. Their procedures cannot be
used for the reliability analysis of nonlinear
structures subjected to general short duration
loadings including seismic loading.

Seismic loading is essentially a short duration
loading. There is no guideline as how to consider
uncertainties in both the amplitude and fre-
quency in the seismic loading. The uncertainty
in the amplitude of the earthquake is suc-
cessfully considered in the context of RSM in
this study, that is, the sampling points will
be selected, as shown conceptually in Fig. 1, to
consider uncertainties in the amplitude. The
uncertainty in the frequency content of an
earthquake can be considered indirectly. Avail~

1200
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1 Consideration of uncertainty in the amplitude
of an earthquake
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able time histories for an actual earthquake
are first normalized with respect to the peak
acceleration. Then the reliability of structures
can be estimated using the algorithm developed
in this study. Since all the time histories have
different frequency content, the estimated re-
liability will indicate the effect of uncertainties
in the frequency content.

4. A Unified Stochastic Finite Element Method

The proposed algorithm intelligently integrates
the concepts of RSM, FEM, FORM, and an
iterative linear interpolation scheme. First,
responses are calculated at the experimental
sampling points of the response surface model,
that is, saturated design with the second order
polynomial without cross terms, by conducting
nonlinear FEM. The initial center point is
assumed to be the mean values of random
variables for the first iteration. A limit state
function is thus generated in terms of k basic
random variables. Using the explicit expression
for the limit state function and FORM, the
reliability index A, and the corresponding coord-
inates of the checking point and direction
cosines for each random variable are obtained.

The new center point for the next iteration
is obtained by applying a linear interpolation
scheme. The updating of the center point
continues until it converges to a predetermined
tolerance level. In the final iteration, the infor-
mation on the most recent center point is
used to formulate the final response surface
using either saturated design with a full second
order polynomial or central composite design
with a full second order polynomial depending
on the number of random variables. This gives
an explicit expression of the limit state function.

The FORM method is then used to calculate
the reliability index and the corresponding
the most probable failure point (MPFP). Some

of the salient features of the proposed algori-
thm are discussed in the following sections.

4.1 Response Surface Method

RSM is an important element of the proposed
study. The primary purpose of applying RSM in
reliability analysis is to approximate the ori-
ginal complex and implicit limit state function
using a simple and explicit polynomial7)'9)'10)'n).
Since the nonlinear time domain seismic res-
ponse of structures is considered, at least a
second order polynomial is necessary.

In this study, two types of second order
polynomial, i.e., with and without cross terms,
are used to represent the response surface.
They can be expressed as

k k
§(X)=b,+ > bX +3 b X?
g( ) 0 g i i |§1 ii i (10)

(X) =b, +ibiXi +ibﬁxf +k2_]ﬁbijxixj
i=l

i=l i=l j>i
(11)

where Xi(i=1,k) is the " random variable,
and bo, bi, bi, and by are unknown coeffici-
ents to be determined. The number of coefficients
for each polynomial in Eq. (10) and Eq. (11) are
p=2k+1 and p=(k+1)(k+2)/2, respectively.
The polynomials can be fully defined either
by solving a set of linear equations or from
regression analysis for the responses at specific
data points called experimental sampling points.
The selection of experimental sampling points
where responses need to be calculated is known
as experimental design. Saturated design and
the central composite design could be the two
most promising ones among the techniques
available to generate sampling points.
Although the details of experimental design
cannot be given here due to lack of space, they

HDHATRBEE| =28 H133 M35(2000.9) 377
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can be found in the literature'®”

4.2 Proposed Response Surface Model and
Iterative Schemes

Considering the form of the polynomial and
the selection requirements for the experimental
sampling points, the three response surface
models suggested by Huh'¥ are considered in
this paper: Model (1): Saturated deign using
a second order polynomial without cross terms,
Model (2): Saturated design using a full second
order polynomial, and Model (3): Central compo-
site design using a full second order polynomial.

4.2.1 Model (1): Saturated Design using
a Second Order Polynomial without
Cross Terms

The response surface of this model is re-
presented by Eq. (10). It consists of a center
point and 2k star points (one at +1 and one
at -1 for each variable in the coded variables
space), i.e., the total number of experimental
sampling points, N=p=2k+1, in which k and
p are defined in the previous section. The
experimental sampling points for this model
in coded values are tabulated in Table 1 for
k=3. This model requires the least experimental
sampling points among three models, i.e., the
least number of deterministic dynamic analyses.
However, it could be less accurate than others

Table 1 Experimental sampling points of model
(1) in coded values for k=3

No. X1 X2 x3

1 1 -1 0

2 2 +1 0

3 0 -1

4 0 +1
2k-1 5 0 0 -1
2k 6 0 +1
2k+1 7 0 0

since it does not cover sample spaces between
the axes: that is, absence of XiX; (two factor
interaction) term in this model.

4.2 2 Model (2): Saturated Design using
a Full Second Order Polynomial

In this model, the polynomial expressed by
Eq. (11) is used to improve the accuracy of the
response surface by inclusion of the cross terms,
which represent the interaction effect of two
variables Xi and X;. This model consists of one
center point, 2k star points, and k(k-1)/2 edge
points, resulting the total number of experi-
mental sampling points to be exactly as many
points as the terms in the polynomial, N=p
=(k+1)(k+2)/2. An edge point'” is a k-vector
having ones in the " and /” location and zeros
elsewhere. The experimental sampling points
for this model are given in Table 2 for k=3.
This model is expected to be more accurate
and less efficient than Model (1).

4.2.3 Model (3) : Central Composite Design
using a Full Second Order Polynomial

The response surface of this model is expressed
by Eq. (11). It consists of: (a) a complete ok
factorial design, where the factor levels are

Table 2 Experimental sampling points of model
(2) in coded values for k=3

No. 21 22 23
1 1 -1 0 0
2 2 +1

3 0 -1

4 0 +1
2k-1 5 0 0 -1
2k 6 0 0 +1
2k+1 7 +1 +1 0
: 8 +1 0 +1
: 9 0 +1 +1
(k+1)(k+2)/2| 10 0 0 0




Table 3 Experimental sampling points of model
(3) in coded values for k=3

No. 21 X2 X3 :]
1 1 -1 -1 -1
2 2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
21 7 -1 +1 +1
2 8 +1 +1 +1
2+1 9 -a 0 0
10 - ta 0 0
11 0 -a 0
12 0 +a 0
13 0 0 -a
AR 14 0 +a
24+2+1 1 15 0 0 0

coded to the usual -1, +1 values, (b) one
center point, and (c) two axial points on the
axis of each random variable at a distance of
a from the center point where « =4\/2—kin order
to make the design rotatable. Thus, the total
number of experimental sampling points is
N=24+2k+1, which are much more than the
number of the coefficient p=(k+1)(k+2)/2. The
experimental sampling points for this model are
given in Table 3 for k=3. This model is
expected to be more accurate and less compu-
tationally efficient than the two previous models,
particularly when the number of random vari-
ables to be considered is large. It also contains
several statistical properties, such as analysis
of variance (ANOVA), orthogonality, and rotata-
bility.

4.2.4 Proposed Iterative Schemes

The three models need to be intelligently
integrated to achieve the computational efficiency
and the accuracy of the proposed algorithm.
It is observed that the efficiency and accuracy

44

of the proposed algorithm can be increased by
applying the two promising schemes.

Scheme 1. Saturated design using a second
order polynomial without cross terms is used
for the intermediate iterations and saturated
design using a full second order polynomial is
used for the final iteration when the number
of random variables to be considered is large,
say more than 9.

Scheme 2. Saturated design using a second
order polynomial without cross terms is used
for the intermediate iterations and central
composite design using a full second order
polynomial is used for the final iteration
when the number of random variables to be
considered is moderate, say less than 9.

This will be discussed further with help of
an example.
Based on the proposed algorithm, a new dynamic

Set initial center point at mean
values of random variables

>

‘Selecl Model

Generate experimental
sampling points

Number of sampling points

(v ]]

Estimate responses at all
experimental sampling points

Determine unknown coefficients for
the explicit performance function

Iteration Check

([FoR]]

Unsatisfied:
Intermediate iteration

Final
Intermediatz jteration iteration Iml
Find the checking point
- Calculate Reliability
Applya |
Hirl::’e;vp:la‘:‘ii: Index, Sensitivity Indexes,
_ . and the most probable
| Find the new center point | failure point (MPFP)
Convergence Check

Satisfied:
Final iteration

Fig. 2 Flowchart of the proposed algorithm
(Program RSDRA)
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reliability analysis program RSDRA is developed
by combining a deterministic dynamic analysis
program” (DYNPR) with a new reliability pro-
gram. The flowchart that shows all the main
steps of the proposed algorithm is given in
Fig. 2.

4.3 Analysis of Variance

Analysis of variance (ANOVA) is used to
represent measures of information about the
separate sources of variation, i.e., error, for the
central composite design. The coefficient of
determination, R®, which is a measure of the
proportion of total variation of the values of
the actual response about its mean explained
by the fitted response model, is calculated as

SSR
R*=222
SST (12)

where the total sum of squares (SST) and the
sum of squares due to regression (SSR) can
be computed as, respectively

ssT=yry- Y

(13)

oty ATY)
SSR=Y'Y (14)

where Y is a NX1 vector of actual response
values, Y is the NX1 vector of response values
from the fitted surface, and 17 is a 1XN vector
of ones.

4 4 Tterative Linear Interpolation Scheme
for Determination of the Center Point

It is important to locate the center point
be close to the most probable failure point
(MPFP) so that the response surface thus

380 ar=mMATARZREE =27 H133 X35(2000.9)

obtained includes most of the failure region,
resulting an accurate reliability estimation.
Bucher and Bourgundg) and Rajashekhar and
Ellingwood'” suggested an iterative linear
interpolation scheme that can be used to locate
the center point efficiently and accurately in
a systematic approach, as discussed below.

In the iterative scheme, the center point is
initially selected to be the mean values of the
random variable Xi’s. Then, using the values
of g(X) obtained from the deterministic FEM
evaluations for all the experimental sampling
points, the response surface £,(X) can be gene—
rated explicitly in terms of the random variable
Xi. Once a closed form of the limit state
function, &(X), is obtained, the coordinates
of the checking point Xp can be estimated
using FORM. The actual response can be
evaluated again at the checking point x, , i.e.,
g(Xp) and a new center point X¢, can be
selected using linear interpolation from the
center point X¢ to X, such that g(X)=0: i.e..

8(xc)

X, =X HXp ~Xp )—————
C, C, D, C, g(xcl)_g(xDl)

if g(xp)Zglxe)
(15)

g(xp,)
glxp ) —gxc)

X¢, =Xp, +(xCl —Xp,) if g(xp, ) < g(xcl)

(16)

2

A new center point X¢ then can be used to
develop an explicit performance function for
the next iteration. This iteration scheme is
repeated until a preselected convergence criterion
is satisfied.

5. Numerical Example

To elaborate the algorithm further and verify
its accuracy and efficiency. a two-story frame
shown in Fig. 3 is considered. All the beams
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and columns of the frame are made of W27x84
and W14x426, respectively, and A36 steel is
used for this example. The frame is excited
for 15 seconds by the actual acceleration time
history recorded at the Canoga Park during the
Northridge earthquake of 1994 (North-South
component) as shown in Fig. 4.

For the serviceability limit state, the permi-
ssible lateral displacement at the top of the
frame is considered not to exceed h/400, where
h is the height of the frame. Of course any
other value can be used for this purpose. Thus,
for this example, 0 anew becomes 1.905cm, and
the corresponding limit state can be written as

g(X) =800 = Vouar (X) =1.905 -y, (X)

17n

allow

in which ymax(X) is the maximum lateral dis-
placement at the top of the frame.

All 9 variables shown in Table 4 are initially
considered to be random. This is denoted hereafter
as Case 1. From the sensitivity analysis, it was
found that the sensitivity index for plastic
section modulus of the beam and columns is
very low compare to the others. By retaining
the two variables (Z° and Z%) at their mean
values, only the remaining 7 variables are thus
considered to be random in Case 2. For each

Table 4 Statistical description of random variablesRandom

Case 1 Case 2
Random Variable Mean Value —

C.0.V. Distribution C.0.V. Distribution
E (kN/m?) 1.9994%x10° 0.06 Log-Normal 0.06 Log-Normal
A® (m?) 1.600%10° 0.05 Log-Normal 0.05 Log-Normal
I (m* 1.186x10® 0.05 Log-Normal 0.05 Log-Normal

7’ (m®) 3.998x10° 0.05 Log-Normal - -
A° (m?) 8.065% 107 0.05 Log-Normal 0.05 Log~Normal
% (m) 2.747x10% 0.05 Log-Normal 0.05 Log-Normal

Z% (m®) 1.424%10* 0.05 Log-Normal - -
13 0.05 0.15 Log-Normal 0.15 Log-Normal

ge 1.00 0.20 Type I 0.20 Type I

HM182 #M35(2000.9) 381
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Table 5 Results of the reliability analysis
Monte Carlo Simulation Pr=0.02887 (8 =1.898) CPU Time=98183sec
Case 1 (9 R.V)) Case 2 (7T R.V.)
Scheme Scheme 1 Scheme 2 Scheme 1 Scheme 2
Pt 0.026969 0.028715 0.027450 0.027792
Proposed B 1.927 1.900 1.920 1.914
Algorithm TNSP 93 569 66 173
CPU Time 109.3sec 567 .9sec 79.7sec 182 .8sec
Error 6.58% 0.54% 4.92% 3.73%
E -0.0980 -0.2223 -0.3931 -0.2389
A° 0.0151 0.0077 0.0119 0.0109
I’ -0.1195 -0.1262 -0.2219 ~0.1290
Sensitivity 2’ 0.0000 0.0001 - -
Index A° 0.0455 0.0201 0.0360 0.0349
4 I -0.1127 -0.1190 -0.1983 -0.1118
Z5% 0.0000 0.0001 - -
£ -0.3100 -0.2833 -0.2723 -0.2792
ge 0.9301 0.9164 0.8254 0.9135
R 98.41% 98.50%
ANOVA SST N/A 10.454 N/A 3.618
SSR 10.289 3.564

case, all the random variables present in the
formulation are given in Table 4. The term & is
the damping coefficient expressed as a percent
of the critical damping and the term g. is a
parameter introduced to incorporate uncertainty
in the amplitude of seismic acceleration. The
statistical descriptions of most of the random
variables, except the damping coefficient & and
the amplitude of seismic acceleration ge, were

6).17) and

extensively studied in the literature’
are given in Table 4. The damping coefficient
& and the amplitude of seismic acceleration ge
are assumed to have Type I distribution and
their COV’s are also assumed to be 0.15 and
0.20, respectively. All random variables are
assumed to be independent for the numerical
calculation.

Using the proposed nonlinear SFEM algorithm,
the probability of failure of the frame for both
cases is estimated. In each case, two types of
schemes identified in Section 4.2.4 are consi-

382 3| =22 H133 R35(2000.9)
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dered. The results of both cases are tabulated
in Table 5 in terms of probability of failure,
reliability index, error, CPU time, total number
of experimental sampling points (TNSP), and
sensitivity indices of the random variables. For
Scheme 2 of each case, the results of analysis
of variance (ANOVA) such as SST, SSE, and
R* values are given in Table 5 since it is only
available when the central composite design
is used. The results are compared with Monte
Carlo simulation result using 100,000 simu-
lations. This result is also shown in Table 5.
A super computer (SGI Origin 200) was used
for the numerical calculation of both proposed
algorithm and Monte Carlo simulation.

It is shown in the Table 5 that the pro-
bability of failure for both cases is very close to
the MCS result. In Case 1, the ratio of CPU
time required for Scheme 1 and Scheme 2 of the
proposed algorithm to that of MCS is found to
be approximately 1/898 and 1/173, respectively.



In Case 2, they are 1/1232 and 1/537. The
proposed algorithm is therefore viable and
efficient for the reliability analysis of non-
linear structures subjected to seismic loadings.

Since the error of Scheme 2 is found to be
less than that of Scheme 1 for both cases, the
use of Scheme 2 is expected to be very accurate
without sacrificing efficiency when the number
of random variable considered is moderate,
say less than 9. When the number of random
variable, however, is large as in Case 1, the
CPU time and TNSP required for Scheme 2
are very large compare to Scheme 1, making
it computationally very inefficient. Thus, consi-
dering both accuracy and efficiency, Scheme 1
is recommended particularly when the number
of random variables in the formulation is large:
say more than 9. Of course, the number of
random variables can be reduced using sen-
sitivity analysis and then Scheme 2 can be
used to obtain more accurate result. For large
practical problems, therefore, the use of sensiti-
vity analysis with Scheme 2 is expected to be
very desirable. It should also be noted that
in both cases when the central composite
design is used: that is, Scheme 2, R values are
found to be greater than 98%. It indicates
that approximately 98% of the total variation
of the limit state function is explained by the
fitted second order polynomial models obtained
from the central composite design, resulting
very low errors when Scheme 2 is used for
both cases.

It was also observed that Case 2 with fewer
random variables is more efficient than Case 1.

6. Conclusions

A relatively efficient and accurate nonlinear
SFEM algorithm is proposed to estimate the
reliability of structures subjected to seismic
loading in the time domain. Uncertainties in
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the seismic excitation and resistance-related
parameters are incorporated. A realistic repre-
sentation of the loading conditions is considered by
using actual earthquake loading time-histories
to excite structures. The proposed algorithm
intelligently integrates the concepts of the
finite element method, the response surface
method, the first order reliability method, and
the iterative linear interpolation scheme. With
the help of an example, it is proved that the
proposed algorithm can be used to estimate
the risk for noniinear structures subjected to
short duration dynamic loadings, including
seismic loading. The iterative schemes suggested
to improve the computational efficiency of the
RSM appears to be effective. For large practical
problems, the use of sensitivity analysis with
Scheme 2, i.e., saturated design using a second
order polynomial without cross terms for the
intermediated iterations and central composite
design using a full second order polynomial
for the final iteration, is expected to be very
desirable.
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