Crystallization behavior and thermoelectric properties of p-type $(Bi_{1-X}Sb_X)_2Te_3$ thin films prepared by magnerron sputtering

마그네트론 스퍼터링법으로 제조한 P형 $(Bi_{1-X}Sb_X)_2Te_3$ 박막의 결정성과 열전특성

  • 연대중 (홍익대학교 공과대학 금속ㆍ재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속ㆍ재료공학과)
  • Published : 2000.12.01

Abstract

$(Bi_{0.15}Sb_{0.85})_2Te_3$ and $(Bi_{1-x}Sb_x)_2Te_3$ thermoelectric thin films were prepared by magnetron sputtering process, and their thermoelectric characteristics were investigated with variation of the sputtering condition and the $Sb_2Te_3$ content. The $(Bi_{0.15}Sb_{0.85})_2Te_3$ film, deposited by DC sputtering at $300^{\circ}C$ with rotating the Corning glass substrate at 10 rpm, was fully crystallized to $(Bi,Sb)_2Te_3$ phase with c-axis preferred orientation. This $(Bi_{0.15}Sb_{0.85})_2Te_3$ film exhibited the Seebeck coefficient of 185 $\mu$V/K which was higher than the values of other $(Bi_{0.15}Sb_{0.85})_2Te_3$ films fabricated with different sputtering conditions. With increasing the $Sb_2Te_3$ content, the Seebeck coefficient and electrical resistivity of p-type $(Bi_{1-x}Sb_x)_2Te_3$ (0.77$\leq$x$\leq$1.0) film were lowered. Among p-type $(Bi_{1-x}Sb_x)_2Te_3$ films, a maximum power factor of $0.79{\times}10^{-3}W/K^2-m$ was obtained at (Bi_{0.05}Sb_{0.95})_2Te_3$ composition..

마그네트론 스퍼터링법으로 p형 ($Bi_{0.15}Sb_{0.85})_2Te_3$과 ($Bi_{1-x}Sb_x)_2Te_3$ 열전박막을 제조하여 스퍼터 증착 조건 및 $Sb_2Te_3$ 함량에 따른 열전특성을 분석하였다. Corning glass 기판을 10rpm으로 회전시키며 DC 스퍼터링법으로 $300^{\circ}C$에서 증착한($Bi_{0.15}Sb_{0.85})_2Te_3$ 박막은 $(Bi, Sb)_2Te_3$ 단일상으로 결정화가 완료되고 c축 우선배향성을 나타내었으며, 다른 조건으로 증착한 ($Bi_{0.15}Sb_{0.85})_2Te_3$ 박막보다 높은 185 $\mu$V/K의 Seebeck 계수를 나타내었다. p형(Bi$_{1-x}$ Sb$_{x}$)$_2$Te$_3$ (0.77$\leq$x$\leq$ 1.0) 박막에서는 Sb$_2$Te$_3$ 함량이 증가함에 따라 Seebeck 계수와 전기비저항이 감소하였으며($Bi_{1-x}Sb_x)_2Te_3$조성에서 $0.79\times10^{-3}W/K^2$-m의 최대 출력인자를 나타내었다.

Keywords

References

  1. IEEE Electron Device Lett. v.19 no.6 Jyh-Jier Ho;Y. K. Fang;K. H. Wu;W. T. Hsieh;C. W. Chu(et al.)
  2. Sensors and Actuators v.A54 M. M$\
  3. IEEE Electron Device Lett. v.18 no.9 V. Milanovi;M. Gaitan;E. D. Bownen;N. H. Tea;M. E. Zaghloul
  4. IEEE Trans. Electron Devices v.43 F. Y. Chen;Y. K. Fang;C. Y. Shu;J. R. Chen
  5. Sensors Mater v.3 F. V. Iklein;H. Baltes
  6. Proc. Temperatur'92 v.8 no.9 T. Elbel;H. J. Just;S. Poser;N. Weeke
  7. Proc. 16th Int. Conf. on Thermoelectrics Sander van Herwaarden
  8. Thin Solid Films v.317 A. Mu$\~{n}$oz;J. Mel$\'{e}$ndez;M. C. Torquemada(et al.)
  9. Sensors and Actuators v.A46-A47 A. Mzerd;F. Tcheliebou;A. Sackda;A. Boyer
  10. J. Crystal Growth v.167 M. Ferhat;B. Liautard;G. Brun;J. C. Tedenac(et al.)
  11. CRC Handbook of Thermoelectrica D. M. Rowe
  12. J. Phys. Chem. Solids v.19 I. Teramoto;S. Takayanagi
  13. Appl. Phys. Lett. v.75 Sunglae Cho;Yunki Kim;Antonio DiVenere;George K. Wong;John B. Ketteron
  14. J. Solid-State Electronics v.15 W. M. Yim;F. D. Rosi
  15. J. Kor. Inst. Met & Mater. v.38 no.1 D. B. Hyun;H. P. Ha;J. S, Hwang;T. S. Oh
  16. to be published in Scripta Mater Tae Sung Oh;Dow-Bin Hyun;N. V. Kolomoets
  17. J. Phys. Chem. Solids v.49 no.1 Z. Stary;J. Horak;M. Stordeur;M. Stolzer
  18. J. Phys. Chem. Solids v.47 no.8 J. Horak;K. Cermak;L. Koudelka