Interaction of Fibroblast Cell onto Physicochemically Treated PLGA Surfaces

물리화학적 처리된 PLGA 표면의 섬유아세포와의 상호작용

  • 강길선 (전북대학교 고분자공학과) ;
  • 이상진 (한남대학교 고분자공학과) ;
  • 전주형 (한국화학연구소 생체고분자팀) ;
  • 이진호 (한남대학교 고분자공학과) ;
  • 이배방 (한국화학연구소 생체고분자팀)
  • Published : 2000.11.01

Abstract

In order to improve the cell-compatability of poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) surfaces, the physicochemical treatments have been demonstrated. Chemical treatments were 70% perchloric acid. 50% sulfuric acid and 0.5 N sodium hydroxide solution and physical methods were corona and plasma treatment. The water contact angle of surface treated PLGA decreased from 73$^{\circ}$ to 50~60$^{\circ}$, i.e., increased hydrophilicity, due to the introduction of oxygen-containing functional group onto PLGA backbone by the measurement of an electron spectroscopy for chemical analysis. It could be observed that the adhesion and growth of fibroblast cell on physicochemically treated PLGA surfaces, especially perchloric acid treated PLGA surface, were more active than on the controt. In conclusion, it seems that surface wettability as hydrophilicity of PLGA plays an important role in cell adhesion, spreading and growth.

소수성 표면성질을 나타내고 있는 poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) 표면의 세포적합성을 증가시키기 위하여 물리화학적 처리방법으로 표면개질 하였다. 물리적 방법으로는 코로나 방전 및 플라즈마 처리가, 화학적인 방법으로는 70% 염소산, 50% 황산 및 0.5 N 가성소다 수용액으로 처리하였다. 처리된 PLGA 표면의 물접촉각은 73$^{\circ}$에서 50~60$^{\circ}$로 감소하였고 electron spectroscopy for chemical analysis의 분석결과, 알킬탄소는 감소되는 반면, 산소를 포함하는 탄소 관능기들이 상대적으로 증가함을 보여 친수화의 주원인으로 사료되었다. 섬유아세포의 배양 결과 control에 비하여 처리된 PLGA상에 점착 및 성장거동이 우월하게 관측되어 본 처리 방법이 세포적합성을 증가시켰다고 사료된다. 결론적으로 PLGA 표면의 적심성에 있어서 친수화는 세포의 점착 및 성장에 중요한 역할을 하늘 것으로 확인되었다.

Keywords

References

  1. Science v.260 R. Langer;J. P. Vacanti
  2. The Properties of Biomaterials Tissu Engineering:Concepts and Applications G. Khang;J. H. Lee;J. J. Yoo(ed.);I. Lee(ed.)
  3. J. Pediatr. Surg. v.23 J. P. Vacanti;M. A. Morse;W. M. Saltzman;A. J. Domb;A. Perez-Atayde;R. Langer
  4. Chem. World v.37 no.3 G. Khang;H. B. Lee
  5. J. Biomed. Eng. Res. v.20 no.1 G. Khang;H. B. Lee
  6. Polymer Sci Tech. v.10 G. Khang;I. Jo;J. H. Lee;I. Lee; H. B. Lee
  7. Bioindustry v.22 G. Khang;H. B. Lee
  8. Polymer Sci. Tech. v.10 G. Khang;J. H. Lee;H. B. Lee
  9. Polymer Sci. Tech. v.10 I. Lee;G. Khang;H. B. Lee
  10. J. Control. Rel. v.4 S. J. Holland;B. J. Tighe;P. L. Gould
  11. Bio-Med. Mater. Eng. v.7 G. Khang;J. H. Seon;J. W. Lee;S. C. Cho;H. B. Lee
  12. Bio-Med. Mater. Eng. v.9 G. Khang;S. J. Lee;J. H. Lee;Y. S. Kim;H. B. Lee
  13. J. Bioeng. v.1 D. F. Williams;E. Mort
  14. J. Bone Joint Surg. v.73A no.1 O. Bostaman
  15. Rev. Macromol. Chem. Phys. v.C28 J. P. Singhal;H. Singh;A. R. Ray
  16. J. Oral Maxillofac. Surg. v.45 O. J. Hollinger;J. P. Schmitz
  17. Bio-Med. Mater. Eng. v.9 G. Khang;J. C. Cho;J. W. Lee;J .M. Rhee;H. B. Lee
  18. Korea Polymer J. v.7 J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  19. Polymer Preprints v.40 H. B. Lee;G. Khang;J. C. Cho;J. M. Rhee;J. S. Lee
  20. Polymer(Korea) v.23 no.3 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee
  21. Polymer(Korea) v.23 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H. B. Lee
  22. Biomaterials v.14 no.5 A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer
  23. J. Biomed. Eng. Res. v.10 J. H. Lee;G. Khang;K. H. Park;H. B. Lee;J. D. Andrade
  24. J. Biomed. Eng. Res. v.10 J. H. Lee;G. Khang;K. H. Park;H. B. Lee;J. D. Andrade
  25. Biomaterials Research v.1 G. Khang;J. W. Lee;J. H. Jeon;J. H. Lee; H. B. Lee
  26. J. Biomater. Sci. Polym. Ed. v.10 J. H. Lee;S. J. Lee;G. Khang;H. B. Lee
  27. Korea Polymer J. v.7 G. Khang;S. J. Lee;J. H. Lee;H. B. Lee
  28. Bio-Med. Mater. Eng. v.6 G. Khang;Y. H. Kang; J. B Park;H. B. Lee
  29. Bio-Med. Mater. Eng. v.5 G. Khang;H. B. Lee;J. B. Park
  30. Bio-Med. Mater. Eng. v.5 G. Khang;B.J.Jeong;H. B. Lee;J. B. Park
  31. J. Colloid Interface Sci. v.205 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee
  32. J. Biomater. Sci., Polym. Edn. v.9 Y. Iwasaki;K. Ishihara;N. Nakabayashi;G. Khang;J. H. Jeon;J. W. Lee; H. B. Lee
  33. Makromol. Chem. Makromol. Symp. v.118 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee
  34. Biomaterials v.18 J. H. Lee;J. W. Lee;G. Khang;H. B. Lee
  35. Bio-Med. Mater. Eng. v.8 G. Khang;J. H. Jeon;J. W. Lee;H. B. Lee
  36. Biomaterials v.6 P. B. van Wachem;T. Beugeling;J. Feijen;A. Bantjes;J. P. Detmers;W. G. van Aken
  37. Biomaterials v.8 P. B. van Wachem;A. H. Hogt;T. Beugeling
  38. Biomaterials v.16 J. S. Steele;B. A. Dalton;G. Johnson;P. A. Underwood
  39. J. Cell. Sci. v.93 P. A. Underwood;F. A. Bennett
  40. J. Biomed. Mater. Res. v.26 J. G. Steele;G. Johnson;P. A. Underwood
  41. J. Cell. Physiol. v.113 R. Hass;L. A. Culp
  42. J. Cell. Sci. v.71 P. Knox
  43. J. Biomater. Sci. Polym. Edn. v.6 J. G. Steele;G. Johnson;G. Griesser
  44. Exp. Cell. Res. v.205 P. A. Underwood;F. A. Bennett