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Key Words :  Fuzzy numbers, Gaussian Fuzzy population , Statistical
Huypotheses .

1. INTRODUCTION

In man-machine control and communication systems, the theory of probability
alone is unsuitable for the evaluation of system reliability. This is because the key
elements are not numbers, but labels of fuzzy sets. Ordinarily imprecision and
indeterminacy are considered to be statistical random characteristics and are taken
into account by classical methods of probability theory. In real situations, a frequent
source of imprecision is not only the presence of randomness, but inexactness due
to subjective factors. In order to represent relationships between the randomness
and inexactness, Puri and Ralescu (1986) introduced the concept of a fuzzy random
variable. Since then, there has been much attentions for fuzzy statistical inferences.
Casals et al. (1986, 1989) discussed statistical hypotheses testing based on a model
represented by fuzzy sets and Schnatter (1992) generalized statistical methods to
fuzzy data by using the concept of fuzzy sample mean and fuzzy sample variance.
Also, Korner (2000) suggested test hypotheses for the expectation of a fuzzy random
variable and Grzegorzewski (2000) discussed fuzzy test for statistical hypotheses with
vague data.

In this paper, we deal with tests of statistical hypotheses for the expectation
and variance of Gaussian fuzzy population. Section 2 is devoted to describe some
basic concepts of fuzzy numbers. The main results and some examples are given in
Section 3.
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2. PRELIMINARIES

Let F(R) be the family of fuzzy number @ : R — [0, 1] with the following
properties;

(1) @ is normal, i.e., there exists z € R such that 4(z) = 1.

(2) @ is a convex fuzzy set, i.e., 4(Az 4+ (1 — A)y) >min(a(z),a(y)) for z,y € R
and A € [0,1].

(3) @ is upper semicontinuous.
(4) supp @ = cl{z € R : 4(z) > 0} is compact.

For z € R, if we denote the indicator function of {z} by %, then Z € F(R) for
all z € R. For a fuzzy set 4, the a-level set of @ is defined by

Laaz{{z:ﬂsw)Za}, 0<a<l
supp u, a = 0.

Then it follows that L% # ¢ and L, is a closed bounded interval for each « € [0, 1].

Theorem 2.1 For & € F(R), if we denote L, = [u!(a),u?()], then the followings
hold.

(1) »! is a bounded increasing function on [0, 1].

(2) ©? is a bounded decreasing function on [0, 1].

(3) w'(1) < w?(1).

(4) u! and u? are left continuous on (0, 1] and right continuous at 0.
)

(5) If v! and v? satisfy the above (1) — (4), then there exists a unique ¥ € F(R)
such that L,? = [v!(a),v?()] for all a € [0,1].

Proof. See Goetschel and Voxman (1986). O

For 4,9 € F(R) and A € R, the addition and scalar multiplication are defined as
usual;

(@ @ 9)(z) = sup min(i(z),5(y)),
TH+Y=2

oo = 9 229
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Then it follows that

Lo (il ® %) = La@i ® Lob = [u' () +v'(a), () +v*(a)],

Lo(Mil) = ALqii = {

Now we define the metric d on F(R) by

d('l],’l‘)) = Sup h(Laa7La'l~))a
0<a<l

where h is the Hausdorfl metric defined as
h(Lqii, L) = max(|ul (a) — vl ()], |[u?(a) — v*(a)]).
Also, the norm ||@]| of fuzzy number @ is defined as
%]l = d(@,0) = max(|u'(0)], |u*(0)]).

From the results of Kaleva (1987), we see that

(1) (F(R),d) is complete but not separable,

(2) d(d & 0, @ B) = d(@, ) for all 4,5, € F(R),

(3) d(A@, AD) = |Ald(@, D).

Let C[0, 1] be the class of all real-valued functions f on [0, 1] such that f is left
continuous on (0, 1] and has right limit on [0,1), especially f is right continuous at
0. Then C[0,1] is a Banach space with the norm ||f|| = sup,¢jo ;) |f{c)| and so is
C[0,1] x €[0,1] with norm [|(f, g)l| = max(||f |, [lg]])-

Theorem 2.2 Define j : F(R) — C[0,1] x C[0,1] by j(@) = (u',u?). Then the
followings hold;

(1) 7(F(R)) is a closed convex cone with vertex 0 in C[0, 1] x C[0, 1].
(2) j(\a @ i) = A\j(@) + pj(®) for @,5 € F(R) and A > 0,4 > 0.
(3) d(g,v) = [l4(a) — j(@)]l.

Proof. Cong-Xin and Ming (1991). O
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3. MAIN RESULTS

Let (€2, A, P) be a probability space. A function X : @ — F(R) is called a fuzzy
random variable (for short, fr.v.) if (X) is a random element of C[0,1] x C[0, 1],
where j is the embedding function defined in Theorem 2.2. A fr.v. X is called
Gaussian if j(X) is Gaussian. If EHXH < 00, the expectation of X is defined by the
fuzzy number E(X) satisfying Lo E(X [EX1 ), EX?(a)].

Theorem 3.1 X is a Gaussian f.r.v. if and only if X = E(X) @ £, where ¢ is a real
valued Gaussian r.v. with mean zero.

Proof. See Feng (2000). O

The variance of X is defined by
Var(X) = E(d*(X,EX)).

Let i = EX and 02 = Var(X). If X is a Gaussian f.r.v. with X = 2@ ¢, then
it follows that Var(¢) = o? ,that is, £ ~ N (0 02). Thus, we will use the convention
X ~FN(i,0?) if X = p®¢ and € ~ N(0,0?).

The f.r.v.’s X1, X2,..., Xp is called a fuzzy random sample from X lfj(Xl),j( 2)s

..,7(Xy) is arandom sample from j(X). For the fuzzy random sample X1, X,..., X,

from X, we define the fuzzy sample mean X and the sample variance S}( by

= 1 . =
X = Heaileia (31)
1 & =
5% = & (X;, X). 3.2
%=1 ; ( ) (3:2)

If X ~ FN(fi,02), then it follows that X = i ® ¢ and

8% = - (ioé il

8P =82, (33)

where £ and S? are the sample mean and the sample variance from £, respectively .
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Theorem 3.2 If X1, X>,..., X, is a fuzzy random sample from X ~ FN(ji,0?),
then X and Sf-( are unbiased estimators of i and o2, respectively.

Now we wish to test the hypothesis Hy : i = fig, Hy : i # fio. Since X is an
unbiased estimator of [i, it is natural that the test statistic should be taken as

(X, fig)
o/

and that the critical region be given by Z > ¢ for some c¢. Since

7 =

and £ ~ N (0, 2—2), we have
d(X, )
o/vn

This implies that under Hy, P(Z > z%) = a. and the critical region at a significance
level v is Z > zg. Therefore the test for the fuzzy mean can be formulated as follows;

P(

> zg) = P(

Theorem 3.3 Let X1, X5,..., X, be a fuzzy random sample from FN(ji,0?). Then
the test statistics for the null hypothesis Hy.: i = fig is

d(X, fio)
o/

and the critical region at a significance level a is Z > zs.

Z =

If 02 is unknown, we replace o2 by its unbiased estimator S}(. Since Sz = S¢
and

3
Se/vn

~ t(n - l)a

we have the following;

Theorem 3.4 Let X1, X5,..., X, be a fuzzy random sample from FN (i, o?). If o2
is unknown, then the test statistics for the null hypothesis Hy : & = fig is

_ d(X, fio)
Sg/vn’

and the critical region at a significance level o is T 2> ta(n ~1).

T
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Turning to the test of hypotheses for a variance, if we apply the usual test about
variance, together with the fact (3.3), we can conclude the followings.

Theorem 3.5 Let X1, Xo,..., X, be a fuzzy random sample from FN(ji,02). Then
the test statistics for the null hypothesis Hy : 0% = ag is

2
X' =
7%

(1) If Hy : 02 > a2, the critical region at a significance level a is x* > x4(n —1).
(2) If Hy : 02 < 0}, the critical region at a significance level a is x% < x?_,(n—1).

(3) If Hy : 0® # o2, the critical region at a significance level « is x? > XQ% (n—1)

or x? < xf_%(n -1).

Example 1 A triangular fuzzy number @ denoted by < [,m,r > is a fuzzy set
% : R — [0,1] defined by

z=t ifl<z<m
- 1, ifzx=m
Wr)=9 ,_, .
=, ifm<z<r
0, otherwise,
where | < m < r. If m = r, we understood
2=t ifl<z<m
a(z) =< 1, ifr=m
0, otherwise,
and if m =1,
1, ifz=m
NN R .
d(z) = ¢ =E, ifm<z<r
0, otherwise.

We note that if 7 = EX is triangular, X (w) is also triangular for all w € Q. To
test the hypothesis Hy : i =< 2.5,3.0,3.5 >, suppose that we have a fuzzy random
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sample observation Z1,...,#19 from FN(ji,o?) as follows;

71 =< 2.896,2.968,3.135 >, 3, =< 1.903,2.435,2.931 >,
iy =< 1.874,2.459,3.357 >, &4 =< 3.136,3.609, 3.918 >,
G5 =< 2.524,2.845,3.225 >, &g =< 2.596,3.193,4.263 >,
7 =< 2.803,3.281,3.786 >, &5 =< 3.097,3.435,4.052 >,
To =< 2.908,3.283,3.604 >, 719 =< 1.793,2.152,3.039 > .

First we have that Z =< 2.553,2.966, 3.531 >. We note that if & =< I;, mq,71 >
and U =< Iy, ma, 19 >,

Thus, we obtain

d(#1,%) = 0.396, d(%2,%) = 0.65, d(%3,Z) = 0.679, d(&4,Z) = 0.643,
d(%s,%) = 0.306, d(Zs,%) = 0.732, d(i7,Z) = 0.315, d(is,Z) = 0.544,
d(%9,%) = 0.355, d(#10,%) = 0.81.

Therefore, s2 = 0.36301,d(Z, fip) = 0.531 and the test statistic is

— d(;, /10)
Sj;/\/IO

Since 0.025(9) = 2.26216 and tg.005(9) = 3.24984, the null hypothesis Hy is
rejected at at a significance level a = 0.05 but Hy is not rejected at a significance
level o = 0.01.

Similarly, for the hypothesis Hy : 0 = 0.4, Hy : ¢ > 0.4, the test statistic is

= 2.78701.

s (n—1)82

= = 20.41 .
X 042 0.41905

Since x3 05(9) = 16.91896 and x32 o, (9) = 21.66605, the null hypothesis Hj is rejected
at at a significance level a = 0.05 but Hj is not rejected at a significance level
a = (0.01.

Now we would like to test the null hypothesis Hy : 41 = g for two independent
fuzzy Gaussian distribution FN(ji1,0?) and FN(fiz,0%). Let X1, Xo,..., X, and
Yi,Ys,..., Yy, be two fuzzy random samples of sizes n and m from FN(M, 0?) and
FN (s, 02) respectively. If we write

Xi:ﬁleafiai:la"'an,
?jzﬁ’?@é‘jaj:l)"'ama
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then under Hy,

Since £ — ( ~ N(0, 2 + 2Z2), we have

This leads to the following result.

Theorem 3.6 Let Xl, Xg, . ,Xn and }71, 172, . ,?m be two fuzzy random samples
of sizes n and m from two independent fuzzy Gaussian distribution FN(ji;, %) and
FN(fi2,02), respectively. Then the test statistics for the null hypothesis Hp : i; =
fio2 is
dX,Y
g dXT)

2 2
2L
n

——

1S

m

and the critical region at a significance level a is Z > zg.

If 02 = 02 = 02 and 0? is unknown, its unbiased estimator is

(n— 1)5’?2 + (m — 1')5')2-,

S’% - n+m-—2
Then under Hy,
dX.¥) __[E-¢
sWita Sith
Since o
§:C =~ t(n+m—2),
Sp\/ntm

we can conclude the following:

Theorem 3.7 Let X1, Xs,..., X, and Y1, Ys,..., Y, be two fuzzy random samples
of sizes n and m from two independent fuzzy Gaussian distribution FN (fi1,o?) and
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FN(fiy,0?), respectively. If o2 is unknown, then the test statistics for the null
hypothesis Hy : i1 = fi9 is o

d(X,Y)
So/a+ 4

and the critical region at a significance level « is T' > t%(n +m - 2).

T =

Example 2 For a given n = 10 observations Z1, ..., %19 from FN(fi;, 0?) in example
1, £ =< 2.553,2.966,3.531 > and s% = 0.36301. Now suppose that we have m = 8
observations ¢, . ..,%s from FN(jiz,0?) as follows;

y1 =< 3.136,3.667,4.501 >, ys =< 2.432,3.163,3.929 >
ys =< 1.902,2.998,3.997 >, y4 =< 3.127,3.557,4.516 >,
ys =< 2.515,2.961,3.879 >, yg =< 2.874,3.485,4.215 >,
yr =< 2.481,2,824,3.627 >, ys =< 2.533,2.953,3.936 > .

Then g =< 2.625,3.210,4.075 > and s = 0.21051. Thus, s2 = 0.29629 and the test
statistic is - -
d(Z,7)

/1,1
Sp\/10 T 8

Since #0.025(16) = 2.11991, the null hypothesis Hy : i1 = jio is not rejected at at a
significance level a = 0.05.

t= = 2.10693.

To test the null hypothesis Hy : 0? = 0'%, we can apply the usual test for the
equality of two variances for normal populations thanks to (3.3).

Theorem 3.8 Let f(l, Xg, - ,X’n and Y7, }72, ..., Y, be two fuzzy random samples

of sizes n and m from two independent fuzzy Gaussian distribution FN (ji1,0?) and

FN(ji2,0?), respectively. Then the test statistics for the null hypothesis Hy : o? =
2 .

o5 is

DN

F =

<RfR

If Hy : 0? > 03, the critical region at a significance level o is F > Foin—1,m—1).
If H; : 0 < 02, the critical region at a significance level o is F < Fi_o(n—1,m-1).

If Hy : 0% # 02, the critical region at a significance level o is F' > Fg (n—1,m—1))
or F < Fl_%(n - 1,m —1)).
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Example 3 For example 2, we shall test the null hypothesis Hy : 0? = 02 against
H, : 0% # 032. At an a = 0.05 significance level, Hy is rejected if

[*]

> Fyo25(9,7) = 4.82322

ol

or

< Fo975(9,7) = = 0.23826.

"~ Fo02s(7,9)

<holue

Using the data in Example 2, we obtain %% = 1.72441. Therefore, we do not reject
v
Hy.
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