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Summary. In this paper, we propose some estimators of Kullback-
Leibler Information functions using the data from three step stress ac-
celerated life tests. This acceleration model is assumed to be a tampered
random variable model. Some asymptotic properties of proposed esti-
mators are proved. Simulations are performed for comparing the small
sample properties of the proposed estimators under use condition of ac-
celerated life test.
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1. INTRODUCTION

In general, most of the life testings are conducted at the usual conditions. But
with modern high reliability devices, life testing may tend to require long time and
excessive expenses. As a common approach to avoid this problem, such circum-
stances call for testing the sample under conditions which are more severe than the
operating conditions, with the result that failure data can be obtained in a short
period of test time. Such life tests are called the accelerated life tests (ALTs).

To begin with, we review the ALT and this method has several types according
to the method which we give stresses for models. And method commonly used in
engineering practice is called the step stress test. In a step stress ALTSs, stress on
each unit is not constant but is increased by planned steps at planned times. A test
unit starts at a specified low stress. If the unit does not fail in a specified time, stress
on it is raised and held a specified time. specimen stress is repeatedly increased and
held, until the specimen fails. The step stress pattern is chosen to assure failures
quickly.
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Again, there are three types of models used commonly on analysis of step stress
ALTs. Those are the tampered random variable (TRV) model, the cumulative ex-
posure (CE) model and the tampered failure rate (TFR) model.

DeGroot and Goal (1979) considered a two partially ALTs in which a test item is
first run at use condition and, if it does not fail for a specified time 7, then it is run
at accelerated condition until failure. Thus, Y =T, if T <7;and Y =7+ a(T—171),
if T > 7; where T is the lifetime of an item at use condition and Y is called the
tampering random variables, 7 is called the tampering point and « is called the
tampering coefficient. In general, « is smaller than 1 since the effect of changing to
the higher stress is shorten the lifetime of the test unit. Assuming that T follows
an exponential distribution with mean # and using a Bayes approach, they obtained
estimators of @ and 8, and optimal change time 7*. This model is called TRV (See;
Nelon (1990), etc).

In the past, many authors suggested the estimators of Kullback-Leibler Informa-
tion (KLI) and used statistics based on the KLI to test a normality, exponentiality
etc., for the classical models. But in ALT models, nobody uses statistics based on
the KLI and Besseler, Chernoff and Marshall (1962) studied an optimal sequential
design for ALTs using the KLI. Therefore, we need to develop the KLI in ALTs.

In this paper, we are going to use the TRV model among the above three models.

Letting Ty <Tg £ LTy be the order statistics based on a random sample
from the distribution function (df), F' with the probability density function (pdf) f
and assuming the observed distribution to approximate model with the df Fy(t) and
the pdf fo(t), then the K-L information is defined by Kullback and Leibler (1951)
as

I(f: fo) = / £(2) 1——dt
-/_ £(t)In fo(t)dt, (1.1)

where, H(f) = — [Z f(t)Inf(t) = [(£F~(t)) dt is the distance between the
observed dlstrlbutlon F(t) with the pdf f(¢) and the true model distribution Fy(t)
with the pdf fo(t) and remaining term will be a constant under the null hypothesis
Hy. Therefore, H(f), the parametric term, is called the entropy and is introduced
by Shannon (1948) as a measure of information and uncertainty. So, the K-L Infor-
mation is an extension of the entropy and we can estimate the K-L Information by
estimating the entropy. But there are not many papers devoted to the entropy esti-
mation problem. Now the most prominent estimator of entropy based on spacings,
was proposed by Vasicek (1976), van Es (1992) and Correa (1995). And we also use
these three entropies in this paper.

Therefore, in this paper, we propose three estimator of KLI functions using the
data from three step stress ALT, this acceleration model is assumed to be a tampered
random variable model (See ; Degroot and Goel (1979)). Also, Vasicek’s estimator
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(1976), van Es’ estimator (1992), Correa’s estimator (1995) are considered. Through
a simulations are performed for comparing the sample properties of the proposed
three estimators in regard to the bias and mean square error (MSE) based on use
condition and we show which one is best in them.

In Section 2, we review a three step stress ALT model and estimators of param-
eters using the maximum likelihood method. In Section 3, we discuss the entropy
estimation. At first, we review three entropy estimators (Vasicek’s estimator, van
Es’ estimator, Correa’s estimator) and estimate them by transforming the sample
of the ALT model into the sample under the use condtion. Then we estimate three
KLI and these are proper statistics, by mentioned their asymptotic properties. In
Section 4, through a simulation study for the comparison of three proposed estima-
tors in small sample, we investigate which proposed estimator is best in bais and
mean squared error(MSE).

2. ESTIMATION OF PARAMETERS
FOR THE THREE STEP STRESS ALTS

In this section, we consider KLI under three step stress ALTs model at tampered
random variable and it calculate the maximum likelihood estimators (MLEs) for
parameters. For the three step stress of ALTSs, all units are initially subjected to
the use condition stress s; = s, until a preassigned time 7; , but if all units do not
fail before time 7y, the stress is increased to sg at time 75 , For the surviving units
at time 7y, the stress is also increased to a larger stress s3 and held constant until
the remaining units fail.

It is assumed that the effect of changing the stress is to multiply the remaining
lifetime by unknown factors «, v(0 < a,y < 1) subsequent to changing points 71,
72 . Let T;; with the df, Fi(¢;;]0), denote life time under the use condition and Yj;
denote the jth life time with the df, F(y;;|0, ,y) under the ith step stress. Then,
the TRV model under the three step stress is given by

le, le <n
Yij=qm +O‘(T2j - 1), nn < Ty < é(TQ —-1)+7 (2.1)
=y —1)+oy(Ts —n), Ty > E(ra—71)+7.

Acceleration factors a, v depend on the stresses s1, so and s3 and possibly also on
the preassigned time 71, T9. Also «, 7 called a tampered coefficients, will be less
than 1 because the effect of changing the stress to the higher level is to subject the
unit to a greater failure.

Since we assume the life time Tj;, is distributed exponential before, the pdf is as
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follows
9exp [_eylj] ’ Y15 < 71,
flyi;10,a,7v) = %GXP [*9 (71 + %g_l)] ) 71 < Y25 < T2 (2.2)
(—%exp [_9 (Tl i T yaaz"—yn)] N

fort=1,2,3, 7=12,--- ,n,.

From the Equation (2.2), we can obtain the likelihood function is,

ny ng 9 . —
L6, a,7) = HHeXp [(—0y1;] H —&exp [—9 (T1 + y2Ja Tl)]

i=1 J=1

=0 T — T | — T
XHZY—’y—exp [—9 <’1'1+ 201 Ly B 2)] (2.3)

= ay
_gn l n2 L ng
B (67 ary

vV W Ty —
X exp l:—@ <U+NQT1+E+a_’y+n3T1+TL3 2057.1):!,

where n=ny +np +ng, U =300 y1y, V=372, (y2; — 1), W = 3232, (ysj — 72),
n; be the number of observations under the stress sy, ns be the number of the
observations under the stress s,, and n3 = n-n; —ns be the number of observations

under the stress ss.
From the Equation (2.3), we can obtain the MLEs of 8, a and ~ as follows.

=™
U + (n2 -+ 'I’L3)7‘1
. N1 [V+n3(72—7'1)] _ é[V+n3(TQ—Tl)]
o= _ (2.4
N9 [U + (nz + ng)n] 9
R mW wé
Y= = .

ang[U + (ng +n3)m1]  n3é

Now we are to find the statistics for this model. But to do so, we need the life
time under the use condition. So, after replacing the parameters with the MLEs, we
transform the life time under the stresses into the life time under the use condition.
Then, the observed life time, Tij, under the use condition are given by

Ty = Yiy, 7=L2,--,m
Ty =Ty = 5™+, 7=12,--- 02 (2.5)
Tsj _ Ysz—‘l'z‘g:;(Tz—Tl) +7, j=1,2,--- ,n3.
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Moreover, T” ,1=123,7=1,2,---,n; has an exponential distribution with the
failure rate 6 because TU is an observatlon of T

Then we will show strong consistencies for TU, 1=1,23,75= 1 2,---,n; using
the MLEs of parameters.

Theorem 2.1 Let Ty, - ,Tin,, To1, - ;Tony, T31,- -+ ,T3n; be a sample from
three step stress ALT under exponentlal dlStI‘lbuthl’l with 9 Then for Tu, Ty,
T21: t T2’n.27 T31a t T3n3 )

T —Ty; = 0 (2.6)

fori=1,2,3,7=1,2,-- ,n;

proof We already know the MLE é, &, and ¥ are consistent estimators of ¢, & and
v , respectively, and Tij is a function of 0, &, and 4. Using the invariance property
of the MLEs, we can easily prove it.

3. ESTIMATORS OF KULLBACK-LEIBLER
INFORMATION FUNCTION USING THREE STEP
STRESS ALTS

In this section, we proposed three estimators ( Vasicek (1976), van Es (1992),
and Correa (1995)) of KLI functions using the data from ALTs. This acceleration
model is assumed to be a TRV model. "

To begin with, we think of the KLI. As mentioned before, we deal with KLI
under the given hypothesis testings. Here, if we let the pdf of Tij with Equation
(2.5) be fﬁj, we can give the hypothesis as follows, whether the pdf is equivalent
with the specific pdf fy or not. Then, the K-L Information is given by,

o0 f7,.(t)
Mg, S = [ fr,00m s
——H(z) - [ f5, 0 o) (5.)
where the entropy, H(fT =- [ fT t)In s, )= (jtFT (t )) dt.

Here, because the remaining term except the entropy term is a constant, we
get the estimated KLI by estimating the entropy only. So, in classification, pat-
tern recognition, statistical physics, stochastic dynamics, statistics, etc.. Just in
statistics, Shannon’s entropy is used as a descriptive parameter (measure of disper-
sion), for testing normality (Vasicek (1976), Arizono and Ohta (1989)), exponen-
tiality (Ebrahhimi, Habibullah, and Soofi (1992), Wieczorkowski and Grzegorzewski
(1999)) and uniformity (Dudewicz, van der Meulen et al.(1995)).
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Here, by assumption that Tij has an exponential distribution, the KLI I(f , fo)
ij
is given by

I(fz, : fo) = ~H(fz) ~nf+ 1. (3.2)

And we use the prominent Vasicek’s estimator, van Es’ estimator and Correa’s esti-
mator as the entropy estimator, H ( fTij)'

First, an estimator, H,,, of an entropy H(f), proposed by Vasicek (1976) is
the Equation (3.3). The estimator was constructed by using a difference operator
instead of the differential operator. The derivative of F~!(p) is then estimated by a
function of the order statistics. So, Assuming that T(yy,T{g), - ,T{(n) is the odered
sample of T,-j, the estimator is given by

1 < n oo N
Hyn = ~ ; In {%(T(i+m) - T(i—m))}a (3.3)
where ’f‘(l) < T, (2 < -+ < T(n) are the order statistics, m is a positive integer,

(m < %),and T(z) = T(l) for: < 1, T(z) = T(n) for 1 > n.
Therefore, from the Equations (3.2) and (3.3), an estimator of KLI, or I( fﬁj , fo)
is proposed by

I = Li(f4,, fo) = —Hmn — Inf + 1. (3.4)

But, to put I; as the statistic of this model, we must show its consistency. Vasicek
already proved the consistency of Hmn for classical model and we know that Hpmp
of the observation Tl] is also consistent because we know that the transformed TZJ is
exponential distributed under use condition. So, we know I is consistent through
the following theorem.

Theorem 3.1 Let Ty, - ,Tlnl,Tgl,"' ,Tan,Tgl,"' ,T3n3 with transformation
be a random sample from the exponential distribution. Then
L{fg,: fo) - I(fr;: fo) (3.5)

as n —» 00, M — 00, =t —> 00 .

proof With consistency of Hp,,, the MLE 6 of 0 converges to € in probability. So,
according to the Slutsky Theorem, we proved it.

Secondly, van Es suggested an entropy estimator of the Equation (1.1) based on
the differences of random samples as follows

1 &R, [n+1 7
HEpn, zm Z In (T (i+m) — (z m))
i=1

+ i -]15 +In(m) — In(n + 1), (3.6)
k=m
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where T(l) < T(Q) <--0 <L T(n) are the order statistics, m is a positive integer(m <
%), and T(l) = T(l) for ¢ < 1, T(z) = T(n) for i > n.
So, the estimated KLI is given by

Ir = L(fp, : fo) = —HEmn - Ind +1. (3.7)

van Es also proved his estimator is consistent and we can know 5 is also consistent
by replacing I; into Is from the above Theorem.

As the last estimator, in 1995, Correa suggested a modification of Vasicek’s
estimator and prove his estimator is consistent. In estimation the density f of F in
the interval (Z(;_m), T(i4m)). This yields a following estimator

HCpn = —% > In(b), (3.8)

im T aG=1) = . R R R '
%g;g;{nf;;(j)iﬁfj)z’, 0 = gar1 Limiem Ty Ty = Ty fori < 1,
and T(z-) = T(n) for i > n. m is a positive integer smaller than 3.

Correa showed that for a few distribution (standard normal, exponential with
mean equal to 1 and uniform U(0,1)) his estimator produces smaller mean squared
error than Vasicek’s estimator and van Es’ estimator in simulation. And the KLI is

estimated by

where b; =

Iy =I(f ) = —HCpp —Inf + 1. (3.9)

Finally, we can suggest the above three estimators of KLI as the statistics in our
three step stress ALT model.

4. MONTE CARLO SIMULATION

In this section, we compare three estimators I3, Io, I3 in bias and MSE and know
which one is best in them.

For the Equations (3.4), (3.7), (3.9), ie., I, Iz, I3, we suppose the failure rate
8 = 0.5, the significant level & = 0.5 and each tampering point 1, = -_még._q’ Ty = %'rl
as simulation conditions.

For each distribution 500 samples of sizes 10, 15, 20, 25, 30, 35, 40 and 50 were
generated and the estimators of I}, I, I3 and their bias and MSE(mean squared
error) were computed : each experiment was repeated 10 times and average was
taken. And from Figure 4.1 and Figure 4.2, we observed the following facts.

First, in a three step stress ALT model, both the bias and the MSE decrease
as m and n increase. In the case of Bias, for fixed n, the biases of the estimators
of I, I3, decrease and have also same results as n increases. For I, though the
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bias increases a little for the fixed n, the change becomes very small. Moreover the
change becomes smaller as n increases. MSEs of three estimators, I, I, I3 also
decrease both fixed n and increased n.

Second, as regard to bias and MSE comparisons, van Es’ estimator is the best in
the above three estimators. And especially, we can think that I goes to zero faster
and stabler than other two estimators from the Bias figure and the MSE figure.

Through comparison for entropy estimators, Correa (1995) showed that his esti-
mator is better than Vasicek’s estimator in the sense that the MSE and the bias are
smaller. In 1999, Wieczorkowski and Grzegorzewski suggested the corrected Cor-
rea’s estimator and had the same results with Correa (1995). And recently Park,
Yoon and Cho (2000) studied the KLI in ALTs.

Our simulation results also indicate that regarding the MSE and the bias, the
van Es’ estimator is better than Vasicek’s estimator and Correa’s estimator in three
step stress ALTs.
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Figure 4.1 Bias for I, I, I3
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