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Hybrid Position/Force Control of Constrained Flexible Manipulators
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dynamics. When a flexible manipulator is set to an

1. Introduction environmental constraint, not only these algorithms but

also force control algorithm is necessary to be

Because of the rapid development in industrial implemented to complete the task. But so far, the

automation, high-speed and lightweight robots publications about force control algorithms are not
consuming less energy, are required. Moreover, in space enough in number.

applications, these properties are specially demanded. So, The research on force control of rigid manipulators

because of these requirements, in the past decade, a began as early as 1960's but, the algorithm was

considerable number of researches have been devoted to systemized over 1970's to 1980's. The approaches

the flexible manipulators, especially their modeling, developed are mainly divided into hybrid position/force

vibration control, inverse kinematics and inverse control schemes and impedance control schemes'™®, So,
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until now, force control of rigid manipulators has been
one of the hottest research topics, however, the same for
fl >xible manipulators just began in 1985 by Fukuda“.
Chiou and Shahinpoor have pointed out that the link
fi :xibility is the main cause of dynamic instability. They
hive extended their research from planar one-link
fl:xible manipulator to two-link manipulator, analyzing
their stability by applying hybrid position/force control
schemes®. Matsuno and Yamamoto have addressed a
quasi-static hybrid position/force control scheme and
dyvnamic hybrid position/force control scheme for a
planar two-DOF manipulator with flexible second link®.
Kjima and Kawanabe have constructed the PIS control
scheme which makes good use of the flexibility of robots,
as without using any force sensor, the feedback of strain
geuges has been used to control the contact force!®. For
force control of flexible manipulators, the inverse
kinematic task is an essence, and has been proposed by
Svinin and Uchiyama®.

The above-mentioned researches have been mainly
reilized for only planar one-link or two-link flexible
manipulators using distributed-parameter modeling.
However, due to the complexity of distributed-parameter
modeling, no attempts have been made for multi-link,
m1lti-DOF spatial flexible manipulators. In some multi-
lirk spatial flexible manipulators, equations of motion
depend upon arm's configuration, and thus, real time
computations are necessary, which are quite difficult and
tirie consuming if distributed-parameter model is used,
hence lumped-parameter model is effective for such
purpose because of their simplicity'®.

The aim of this paper is to develop the model by
expanding the lumped-mass and massless spring model,
which is easier for discussing kinematics, controllability,
dynamics and control strategy with regard to complicated
system such as three dimensional constrained multi-link
multi-DOF  flexible The  hybrid
position/force control scheme is applied to this model.

manipulator.

The vibration of link is suppressed without control loop
of vibration suppression. The equations of motion are
ob:ained by applying the Hamilton's principle and the
state-space model by the Lagrange's method. This model
is analyzed on MATLAB. In the second step, a precise

simulation model is developed using ADAMS TM, which
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is a commercial 3-dimensional analysis software. In
order to simplify the discussions, we take the case of a 2-
link manipulator moving in a vertical plane only.

Finally, experiments and simulations are performed,
comparison of simulation results with experimental
results is given to show the performance of our method.

2. Modeling of Constrained Flexible
Manipulator

2.1 Constraint equation
The both
nonintegrable nonholonomic and integrable holonomic

kinematic  constraints stand for

constraints, The holonomic constraints are further
divided into time-independent sceleronomous, and time-
dependent theonomous constraints®. In this paper, only
theonomous constraints are considered which can be
written in the following form

pla,t) = 0, 1)
where @ € ®' are the linearly independent constraint
equations, ¢

is time, and ¢ are the generalized

coordinates.

2.2 Equations of motion

By using lumped-parameter model of the flexible
manipulator'®, equations of motion can be derived by
using Hamilton's principle, and can be written as

{r] M, () My@lle| [m g
= + .
0 MZl(q) Mzz(q> é h2(q7q)

0 0 .
N 6 N P A . J¢T9/1 ’
0 K,|le PR Jpe A
or in a compact form
Lt =M()j+hiq,)+Kq+g@+J] A, 3)

where

7
q= { } : generalized coordinates,
e

6 € R" are the joint rotations,
e € R™ are the the elastic deflections,
T : joint torques vector (R"),
M(q)
h(q,q) : vector of centrifugal and Coriolis forces,
K stiffness matrix,

: inertia matrix,
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g{q) : gravity vector,

J, : Jacobian matrix for constraints (R'*(™*"/),
y - vector of Lagrange multiplier (R’ ), and
L : transformation matrix,

c=[r., ol .
Jalon and Bayo have used the same constraint Jacobian
matrix for both rheonomously and scleronomously
constrained systems®”. Therefore, here we can use
Jacobian matrix for rheonomous constraints as

J :a—"’Jq(q)

[ 6p
_| %0 %0 . %9 0p 0¢ . 09|,
a6, 06, 06, Oe, Oe, de,,
=\ J J,,,,],

Where

of the manipulator, and p represents the Cartesian

coordinates and the three Euler angles of the end-effector.
The Lagrange multiplier can be represented as

J, :[J(, Je] is the conventional Jacobian matrix

N
grad ¢
gradp = Vo = by
o

where f, is the component of contact force normal to
the constraints.
In order to simplify Eq. (2) and Eq. (3), we make the
following assumptions:
- Only the slow motion is considered, and thus
the centrifugal and Corioli's forces can be

neglected,
hiq,q)=0,
- The influence of elastic deflections eis
supposed to be small, and thus,
M(G,e)~ M), g(0,e)=~ g(@).
In the stationary condition (i.e., #=6=0and

¢ =¢=0), Eq. (2) becomes

o|_[0 0 |6 &6,) J;afio
[0}_{0 KZZ]{30}+[32(90)}+{JL% @

where 7, are the static torques to keep the arm in a
configuration to balance the gravity and contact force,
e, are the static deflections due to gravity and contact
forces, and 8,, A, are respectively the angles and the
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Lagrange multipliers for the static condition. In addition,
Ae,A1,40 and AA can be respectively expressed as
follows:

Ar =1-15 = r—(g1(00)+1‘:g Aods

Ade = e—e;=e+K5(g,(0)+T A),
A0 = 0_90,

A% = A2,

M

Incorporating Eq. (7) along with above assumptions into
Eq. (2), the compact form is achieved as

LAr=M(0)Ag+K Aq+J, A4, ®)

where Agq = [A o7 ae” ]’ . The constraint environment
is modeled as a spring with a large spring constant,
therefore Lagrange multiplier 44 is given by

AA=K, ,NAp=K, N(J,40+J,Ae),

where K,

&)
are the environmental stiffnesses, 4 p are
. . Vo
the deflections of the constraints, n:-|V—|
4

vector normal to the constraints, and N=n'n .

v

are the unit

Substituting Eq. (9) into Eq. (8), the approximated

equations of motion can be written as

[r}_{M“(q) M, () 9}
0 Mz[(q) Mzz(q) e
r r (10)
oo Koy Ny Joo Koy NJ, Al
JLK,NJ, Kp+J, K, NIJ, | de]’
or in a more compact form
LAr=M()4G+K" Aq. an

3. Simulations and Experiment

In order to validity the model of lumped parameter

method for constrained flexible manipulator, the
equations of motion are obtained by applying the
Hamiltion's principle and state-space model by

Lagrange's method. In the second step, a precise
is developed to by distributed
parameter method using ADAMS TM, which is a general

simulation model

purpose 3-dimensional analysis software.
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Force sensor

Joint 6 ~

Fig. 1 Experimental robot with 2 links and 7 joints

Fig. 2 A photograph of experimental robot setup

To clarify the discussion, the motions of an
experimental flexible manipulator ADAM (Aerospace
I'ual Arm Manipulator) are considered. ADAM has two
arms and each arm consists of 2 elastic links and 7 rotary
joints"V, In this paper, however, only the left arm of
ADAM (Fig. 1 and Fig. 2) is considered. The discussion
is restricted to only the vertical motion of joints 2, 4 and
6 (6, 8,, 65 ) while joint 6 always preserves an angle of
7 12 [rad] with respect to constraints.

Based on the above model, two simulations are
performed. The results, achieved by a precise model
¢onstructed by commercial dynamic analysis software

packages, are compared with experimental results.
Table | ADAM link parameters.

_ Link 3 Link 5
___Length 0.5m 0.5m
___Elastic part 0.359 m 0.395m

Diameter 0.013 m 0.0l m
Material SUP-6 SUP-6

____EH 288.1 Nm’ 100.8 Nm?
Mass 0.7 kg 0.5kg
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Link 5

Mass 3
ms Esls, GsJs

Fig. 3 Lumped-parameter model of the experimental
manipulator ADAM

3.1 Experimental setup

The experimental manipulator ADAM is driven by
DC servo motors with hardware velocity control. Each of
motors 1-3 has an optical encoder for sensing the joint
angle and a tachometer for sensing the angular velocity.
None of the motors 4-7 has a tachometer, and thus, pulse
signals generated by optical encoder are translated into
velocity signals through F/V (Frequency to Voltage)
converter.

The parameters of each link of ADAM are presented
in Table 1.Strain gauges are used to measure the link
vibrations while a force sensor is used to measure the
contact force at end-effector.

3.2 A lumped-mass spring model

The arm under consideration is modeled by lumped-
masses and massless springs as shown in Fig. 3®. The
lumped masses are considered concentrated at the tip of
respective links while the links are considered as
massless springs with elastic and torsional properties as,
E;I,, E;I; andrG,J,, G;J; respectively.

3.3 Control scheme

We shall make use of a simple control scheme which
represents our initial approach to the sophisticated
control problem. More details on the control, such as
stability analysis, will be presented elsewhere.

As ADAM is equipped with the velocity feedback
servo motors, so joint motion is commanded by joint
velocity command, and therefore joint torque cannot be
controlled directly. Hence, we assume the relationship
between velocity command and the torque as follows
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Joint 1

Fig. 4 Idealized model by identifying (parts and joints)

K., 6

z'=Gr1(sp(Vn:f'_ sv m)=A(éc_é)’ (12)

where
G,

K,

: gear reduction ratios,
: voltage feedback gains,

K, :voltage/velocity coefficients,
9,,, =G, 0 -
Vef :

angular velocities of motors,

Ler - Voltage velocity commands,

8. : velocity commands, and

A= Gr2 K, K, :velocity feedback gains.

Voltage velocity commands V,ef are computed by

I/ref=G'rI( 0

w0 13)
and are used in the experiments.

The elastic deflections of the flexible links are due to
trajectory dynamics, contact force, gravity and friction.
Neglecting the friction between the end-effector and the
environmental constraint, the elastic deflections e can
be obtained from Eq. (6) as

Kpey=—(g,8)+J7 ). (14)

For slow constrained motion, when the manipulator
moves slowly, the elastic deflections of the links are only
dependent upon the contact forces and the gravitational
force acting on them. The vibration of links can be easily
controlled by controlling the contact forces.

So the vibration of manipulator can be suppressed by
controlling the contact forces. The approximate joint

velocities € . can be computed as follows
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6.=0,+6, (15)

where @, is the joint velocity vector for positioning

while & ; is an additional component for force control.

The velocities 9, and 60  are respectively computed
as
6, =J;'U-n"n)K, (p, - p),

0, =A" I nT K, (1, -2) (1)
f - g o d ’

where I is the unit matrix. nT, I -nT n) define
matrices which respectively select force and position

K

directions. p 1S a proportional gain matrix for

positioning while Kfp is a proportional gain scalar for
force control.
From Egs. (7) and (12) we have
Ar=A{(6,-0) - A" (g,(8)+ I 35 )}
If the velocity servo loop is sufficiently stiff, that is,
the gains A are high, the term A7'(g,(6,)+J )5 4,)

)

can be neglected. Eq. (17) can be represented as follows

Ar= A{(6,— 6)-(6-6,)} = A(A6,-46). (18)
Then, substituting Eq. (18) into Eq. (11) and taking

into account the fact that A6 = I’ Ag , the equations of

motion of constrained flexible manipulator are obtained

as
MAG+LAL Ag+K* Aq=LAAG.. (19)

Eq. (19) can be transformed into the state space form as

I:Aij]_ {- MLAL -M"K'} [Aq] [M"LA} :
"= x + 46,
Aq I 0 Aq 0
(20
Eq. (20) can be cast into state space equation form as
follows
Ax=AAx+ BAG,, @n
In the simulations, the discrete-time state equation
corresponding to Eq. (21) is used in the following form
Ax(k+1)= @ Ax(k) + I A6, (k). (22)
where k indicates the Kk -th interval of the sampling
process, @ and I are the discrete matrices of A and
B for a zero-order holder (ZOH).

3.4 A precise model
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(b) Experimental result
Fig. 5 When end-effector of robot arm does not move

A precise model of the ADAM robot is constructed
by ADAMS ™ ADAMS ™ s a commercial software
package for dynamic analysis of mechanical systems
produced by Mechanical Dynamics, Inc. As shown on
the actual system Fig. 2, the ADAMS model is composed
of the experimental robot ADAM, which has 2 link and 7
joint, and wall. In ADAMS TM, it was modeled with [5
parts, 6 joints, and 17 force components, and is shown in
the Fig. 4. In this simulator, a finite-element method
based on Timosenko beam theory is used as a modeling
method for flexible structures. To obtain a precise model,
the elastic beam is divided into five pieces.

3.5 Results and discussion

We present the experimental and simulations results
for the case when end-effector is not moving, and when it
is moving while applying force. The constraint is a
vertical plane located at 0.375 [m] in the y direction
from the robot's reference coordinates. So, the end-
effector is constrained in only the y direction, whereas
it is free to move in the x —z plane. In the second case,
end-effector moves with a velocity of 0.17 [m/s] and the
desired contact force of 5 [N].

The responses of task motion and contact force at the
tip, as achieved by simulations and experiments, are
shown in Fig. 5 and Fig. 6, respectively. In Fig. 5, K,=
diag [1 1] [rad/(m s)] and K ,, = 0.2 {rad/(N s)], and in
Fig. 6, K,, = diag [4 4] [rad/(m s)] and K, =04
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[rad/(N s)]. The sampling time is set as 10 {ms), and for
these simulations, K, of Eq. (12) is decided to be
approximated to the experimental results, and the
environmental stiffness is taken as 5000 [N/m]. In Fig.
5 and Fig. 6, “ADAMS” stands for ADAMS simulation
“MATLAB” for MATLAB
simulation software.

Fig. 5 and Fig. 6 show that the presented control

software while stands

scheme, which does not consider the vibration control, is
effective for constrained flexible manipulators modeled
by lumped-parameter modeling method. In case of free
motion of end-effector, the vibration suppression is
necessary for position control, however, in case of
constrained motion of end-effector, elastic deflection of
link is constrained in the force control direction, so
application of vibration control scheme is not necessary
due to dependency between elastic deflection of link and
the contact force. So, vibrations for constrained flexible
manipulators are automatically suppressed by controlling
the contact force.

4, Conclusions

A hybrid position/force control scheme for flexible
manipulators has been presentéd. Experimental results
show that the system responses are in good agreement
with simulation results. Investigating these results, it can
be concluded that our control scheme is effective.
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(b) Experimental result
Fig. 6 When end-effector of robot arm moves

Until now, the force control scheme of rigid
manipulators has been passively applied to flexible
manipulators, however, the future work in this area may
find the active application of elastic deflection and
compliance of the links to force control of flexible
manipulators. In that case, the important relation between
force and elastic deflection for even slow motion of
flexible manipulators can also be applied to force control.
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