B OA T A it
A5 529k, 2000. 6. 2000-5-2-1-2

AR Xk =230 A HAH
A= F FHz A
Class testing of Object—oriented program

Dong-Ju Im*, Ho-Jin Choi**

™

q o

ARG 2o H2E AP 7|Edd ZAT 7S SoA H2E S AR ElolE
ezt F593 B2 doly A AP FeES nels = 7| " 2" 7S UE
AFlE H2E Aol2ql dlase] A-b2E APAZIT 3 Fd2 H2EE el fAtaAe 43
< Bl H2E v]§ 2 HEY T2 Fd2d dF H2d PR ANEE S 2P

Abstract

I propose implementation-based class testing technique based on the test adequacy
criterion of an object-oriented program. Considering inter-data member dependences and
a set of axioms for test data adequacy, it generates sequences of methods as test cases
which satisfy a flow graph-based testing criterion. For a derived class testing, it
considers inheritance relationship and the resuability of the testing information for its

parent classes which verified the reduction of test cost through the experiment.

o mAUSR ANFAS AP SR
e ZA O ABEAL A

8 B OAF R Jm Lik(2000. 6.)

I . Introduction

Most of the research on software testing is for
a procedure-oriented software. Object-oriented
software structure is different from procedure
-oriented one. Even though a conventional
testing is efficient, it cannot be applied directly
to object-oriented software(1](2)(3].

A basic composition unit in object-oriented
software is a class. An individual testing of the
methods which are the operations defined in a
class is simple. but a class testing cannot be
reduced to the independent testing(4](9). Each
method operates mutually with other methods by
being executed based on a given object state and
The
environment of the methods is given not only by
The

influencing an object state can be

by changing the state. execution
parameters but also by an object state.
methods
regarded as the public methods accessible out of
the exterior of the class, and the methods can be
it is

called in an arbitrary order. Therefore,

important to determine in what order the
methods are executed for a class testing. The
test cases for a class testing are a series of the
method combination, and a class testing is the
validation of what effect is made on an object

state(1].(5)

II. Test adequacy criterion

All the cases of the call of the methods in an
arbitrary order cannot be tested. Therefore, the
significant sequence of the methods satisfying
the adequacy criterion of the test cases should
be tested(8). The adequacy criterion of the test
cases is a selection criterion, and the criterion
means that the testing with the generation of
the test cases satisfying the criterion brings the
access to the precise program. The test criterion
and level of an object-oriented program
researched so far is studied in this section.

The adequacy criterion of an object-oriented
program so far is concerned with a few of the
axioms Perry and Keiser studied(7).

The criterion satisfying the control and data
flow Parrish et al proposed on the basis of a
class flow graph is as follows{6].

+ all-node coverage

All the methods represented in a flow graph
are tested once or more.

+ all-edge coverage

All the edges represented in a flow graph are
tested once or more.

- all-definition coverage

The

represented

paths between all the definitions

in a flow graph and the uses
reachable from them are tested once or more.

- all-use coverage

The

represented

paths between all the definitions
in a flow graph and all the
reachable uses are tested once or more.

- all-definition/use coverage

All the paths

represented

between all the definitions

in a flow graph and all the

ARG T2 FP2& HAH)

reachable uses are tested once or more.

The level of a class testing is identified as
follows, and also the consideration is divided
into the exactitude of a single data member only
and the inter-operation between data.

+ Intra-Method Testing

Individual method is a condensed function, the
level of which corresponds to the unit testing of
a conventional software testing. Therefore, the
conventional functional or structural testing
technique can be applied, and the definition-use
path within a single method is tested.

+ Inter-Method Testing

The use-definition path is tested including the
other method called explicitly from a method.
The testing corresponds to the integration
testing of a conventional software testing.

+ Intra-Class Testing

The class structure of an object-oriented
program has not an imperative, but a declarative
property which is executed in an arbitrary order.
That is, the data members defined within a class
influence the methods within the class as the
global variables do. and so the data dependence
by data members can occur without a direct call
Therefore, the

definition-use path caused by a

between the methods.
significant
method call which is not a method call in a
predetermined order should be tested.
+ Inter-Class Testing
The methods defined in

mutually between the methods not only in a

classes can operate
single class but also in some classes. For
example, if the data members are inherited from
the upper class, the mutual operation of the
methods between the classes through the data
members occurs. Consequently, the definition-use
path caused by a significant method call between

the classes is tested.

. Class testing using slicing

The testing of a class which is a basic

composition element of an object oriented
program is proposed in this section. As a class
testing cannot be reduced to the independent
testing of the methods, the mutual operation
between the methods through the data members

should be tested. The dependence between the

" data members should be also tested. To begin

with, a base class testing is proposed in section
3.1, with the points considered.

A derived class testing should consider the
mutual operation between the classes through an
inheritance and the reusability of the test cases
developed already in the process of a base class
testing.

3.1 Base class testing
Procedure 1. The unit and integration testing
of the method
In procedure 1, a method unit and method
performed with a

integration testing are

conventional functional testing or structural
testing applied.

The individual method is a condensed function
and a minimum unit of the testing. The unit
testing of a conventional software testing can be
applied for a method unit testing. The local
variables or data members defined and used in
the body of the method are tested with the
previous data flow testing.

In case the call of the other method occurs in
the body of a method. the integration testing of
a conventional software testing can be applied

for the method integration testing, as the call

10 W OARE i XiE(2000. 6.)

relationship can be determined statically.

The testing of procedure 1 is not different
from the previous testing. However, consider the
following.

When the method defined in a class is called
the behavior of the method
methods by
redefining the data members on the basis of the

and executed,

operates mutually with other
data members of the object receiving the
message. When the exactitude of a class consists
in the object state, that is, the combination of
the data members, the unit testing of individual
method

performed in procedure 1 are not enough to

methods and integration testing
detect the errors concerned with the definition
and use of the data members. Therefore, a class
level testing process is needed.

What is

testing of the

is the
constructor

in procedure 1
The
initializes all the data members, which makes an

important
constructor.

object level testing possible.

The capsularization of an object oriented
concept can be thought to reduce the possibility
of the erroneous mutual operation between the
modules of an object-oriented program. The
anticomposition axiom of Perry and Keiser's test
case selection criterion(7] asserted the that the
proper independent testing of the individual
program elements did not guarantee the proper
testing of the integrated program. Therefore, a
class level testing should be performed along
with a method level testing. A class level testing
is to validate if the object state treated by the
methods called in a significant order is correct.
The object state is the combination of the values
the data members have, and its validation is to
check if the values of the data members are
exact. The unit testing of the data members is
performed in procedure 2. The slice concerned
with a class hierarchy slicing of each data
member is identified and tested in this research.
The testing if the methods

process means

operating mutually through the data members
deal with the data members exactly. To begin
with, the definitions needed for the explanation
are described.

The set of the methods using or defining a
data member d as level-0 can be identified from
a class data flow graph. The definition set of
level-i can be grasped by the backward traversal
of a class hierarchy with a data member d
selected as a slicing criterion. That is, when a
backward edge traversal is made from a data
member d, the methods marked first become the
elements of DO(d),
second in the continual traversal become the
elements of D1(d).

and the methods marked

[Definition 1}

level-1

mu defines di as level-0, if a method
m; defines a data member d; directly.

me defines d; as level-1, if a method
mu defines a data member di as level-0,
and a method me defines a data member
dz used to define di as level-0. The
definition of level-i is also defined in the
same way. If level-k or level-(k+1) is
possible to be defined, it is defined as
level-k. The set of the methods defining
d as level-i is designated as Di(d).

Di(d), definition of

For example, even though the method defining
dl as level-1 does not define dl within it
directly, it makes an indirect effect on dl1 by
defining d2 influencing the definition of d1.

The use of level-0 is defined like the definition
of level-0.

ARG z2aPe] R H2H 11

[Definition 2] Us(d), the use of level-0
my uses di as level-0, if a method my
uses a data member di directly. The set of
the methods using d as
designated as Ui(d).

level-i s

[Definition 3] Data member definition
matrix

When the number of a class data
member is n, a data member definition
matrix is a nXn matrix designated as
Def_M(i,j), which is defined as follows.

If Do(d) defines d as level-k,
Def M(i,j) = di

A data member definition matrix represents
the direct or indirect dependence between the
methods through the data members caused by
the use-definition relationship of data members.
For example, as DO(di) is the set defining di as
level-O from Def. 5.1, the value of Def M(i,i) is
d0. If the value of Def M(i,j) is dk, the method
set DO(dj) defining dj as level-0 makes an
indirect effect on a data member di.

A class slice of a data member d is composed
of a constructor and the method set defining and
using d. In procedure 2 performing the unit
testing of a data member, i=0 is defined, and in
procedure 3 performing the integration testing of
a data member, i20 is defined. Procedure 2 and
3 are described below.

Do(d1) Doldp) Do(di) Doldn)
di do
dy dy
d d
d- dy

{Definition 4] Class
member d

Slice(C, d) =
Uo(d)

slice of data

(Constructor, UDj(d),

Procedure 2. Unit testing of data member

A class is divided into the slices concerned
with each data member in order to generate the
test case validating if each data member is
treated exactly. Therefore, a single class is
divided into the slices as many as the number of
the data members to be used in the class. The
definition set of a slice is composed of a direct
definition set(Di(d), i=0) only.

In general, the analysis of the control and
data flow in a program code is used for the
information analysis for the generation of the
test case in an implementation-based program
testing. A data flow analysis is to trace the use
of the variables after their definition through the
execution flow path, and the trace degree of a
definition-use path depends on the selection
criterion of the test case based on a data flow.
The test cases mean the scenario tracing the
definition-use relationship of the data members.
The approach for a class testing is to perform
the method sequences in different many orders.
Therefore, the testing order of the methods can
be defined
relationship of the data members.

based on the definition—use

In order to apply the data-flow coverage
criterion using a class flow graph, each slice of
the classes should define a flow graph. The pairs
of all the methods have a control edge. That is,
all the methods are assumed to be called by an
arbitrary method.

12 PR OARRE & 3i5(2000. 6.)

[Definition 5] All~use
criterion(data member unit)

If a test case T includes a method
sequence <i, ni, ., nm > (M=0, n&
Do(d)) for all i€Dy(d) and all jEUs(d), T
satisfies all-use coverage criterion for d.

coverage

Consequently, each data member is assumed
to be independent, the test case generated in
procedure 2 is the suitable test case satisfying
all-use coverage criterion for each data member.
In general, however, because the dependence
between the data members exists, procedure 3 is
executed with an anticomposition axiom
considered.

Procedure 3. Integration testing of data
members

In terms of an anticomposition axiom, the
should be

revalidated, even though each element is tested

exactitude after its integration

properly. The dependence between the data
members of which the objects consist exists, but
the unit testing of the data members performed
in procedure 2 does not consider the dependence
between the data members. Consequently, in
order to test a class properly in an object level,
an object unit testing, that is, the integration
testing of the data members considering the
inter-data dependence between them caused by
the use-definition relationship is needed.

As in procedure 2, in procedure 3 a class is
divided into the slices concerned with the data
members, and each slice is tested one by one.
The definition set of a slice includes an indirect
definition set(Di(d), i=0), for the
dependence between the data members should be

inter-data

considered. The test cases are generated with

the application of the data-flow coverage
criterion to the definition-use path of an object

unit. The definition or use of a data member

means the definition or use of an object.
Therefore, unlike Def. 5 considering only the
definition-use path of the same data members,
the definition-use of an object unit should
consider the definition-use path of the other
data members, and it is defined as follows.

IV. Conclusion

The testing of object-oriented program has
begun to develop, most of the previous research
is a specification-based testing based on the
abstract data type, and the research on an
implementation-based testing is very weak. In
this thesis, an implementation-based testing and
the generation of the test cases are proposed,
and the adequacy criterion of object-oriented
program testing studied so far is considered as
follows. First, the test cases generated in this
research satisfies all use coverage criterion of
the test case selection criterion based on a flow
Second, the
anticomposition, and antiextensionality axioms of

graph. antidecomposition,
Perry and Keiser are applied to the testing
Object-unit
inter-dependence between data members for the

process. testing considering the
validation of a class correctness is proposed, and
in the case of a derived class, the inter-class
testing considering an inheritance is proposed.
Third,

considered. That is,

the reusability of the test cases is
the testing information
analyzed previously in the testing process of a
derived class is reused. It is proved through the
experiment the fact that the consideration of the
reusability can reduce the number of the test

cases.

AAAG T2y FY~ HAH 13

(1)

References

I. Bashir and A L Coel, "Testing C++ (lasses,”
Proceedings of the 1st International
Software Testing,
Reliability, and Quality Assurance, 1994

M. J. Harrold and G. Rothermel,
"Performing dataflow testing on classes,”
Proceedings of the 2nd ACM SIGSOFT

Symposium on the Foundation of Software

Conference on

Engineering, Dec. 1994.

H. Kim and C. Wu, "A Class Testing
Technique Based on Data Bindings,”
Proceedings of '96 Asia-Pacific Software
Engineering Conference, Dec. 1996.

(4) M. Smith and D. Robson, “Object-Oriented

(5

(7]

Programming - the Problems of Validation,”
Proceedings of Conference on Software
Maintenance, 1990,

S. Zweben, W. Heym, and J. Kimich,
"Systematic Testing of Data Abstractions
Based on Software Specifications,” Journal
of Software Testing, Verification, and
Reliability, 1992.

A. S. Parrish, R. B. Borie, and D. W.
Cordes, “Automated Flow Graph-Based
Object-Oriented
Modules,” Journal of Systems Software,
Nov. 1993.

D. E. Perry and G. E. Kaiser, "Adequate
Testing and Ohbject-Oriented Programming,”

Testing of Software

Journal of Object-Oriented Programming,
Jan. 1990.

(8) M. Hutchins, H. Foster, T. Goradia, and T.

Ostrand, “Experiments on the Effectiveness
of Dataflow-and Controlflow -Based Test

Adquacy Criteria,” Proceedings of the 16th

International Conference on Software

Engineering, May 1994.

(9) M. Ross. C. A. Brebbia, G. Staples, and

J. Stapleton, "The Problematics of Testing
Object-Oriented Software,” SQM'94, vol.
2, July 1994.

. ﬁﬁ&mw 4w D
dEx
1985 gt ojEas
(231D

19923 Concordia Univ 23}
Graduate Diploma
=

1993 SUNY at New Paltz
HARIHo]3HAAD

g7 Mgty AEAe}
YA FE

BARoF ¢ AAREEREE A

2] 24, 938}
35X

1996d B5dida AxAE
ZHZEh

1998d ZAdga A beAs
FHolEHAh

1999¢ ~#A 2Hdigw A
YA vl

Aol : ARG AREA,

tloejufo] 2

