Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 5 Issue 2
- /
- Pages.60-70
- /
- 2000
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
A Implementation of the Feature-based Hierarchical Image Retrieval System
특징기반 계층적 영상 검색 시스템의 구현
Abstract
As a result of remarkable developments in computer technology, the image retrieval system that can efficiently retrieve image data becomes a core technology of information-oriented society. In this paper, we implemented the Hierarchical Image Retrieval System for content-based image data retrieval. At the first level, to get color information, with improving the indexing method using color distribution characteristic suggested by Striker et al., i.e. the indexing method considering local color distribution characteristics, the system roughly classifies images through the improved method. At the second level, the system finally retrieves the most similar image from the image queried by the user using the shape information about the image groups classified at the first level. To extract the shape information, we use the Improved Moment Invariants(IMI) that manipulates only the pixels on the edges of objects in order to overcome two main problems of the existing Moment Invariant methods large amount of processing and rotation sensitiveness which can frequently be seen in the Directive Histogram Intersection technique suggested by Jain et al. Experiments have been conducted on 300 automobile images And we could obtain the more improved results through the comparative test with other methods.
최근 컴퓨터 기술의 발전으로 인해 영상을 효율적으로 검색할 수 있는 영상 검색 시스템이 정보화 사회의 중요한 핵심 기술로 대두되고 있다. 본 논문에서는 내용기반 영상 데이터 검색을 위한 계층적 영상검색 시스템을 구현하였다. 1단계에서는 색상 정보를 위해서 Striker 등이 제시한 색상 분포 특성을 이용한 색인 방법의 문제점을 보완하여 지역 색상 분포 특성을 고려한 색인 방법을 사용하여 1차로 영상을 대 분류한다. 2단계에서는 1단계에서 대 분류된 집단 영상들에 대하여 2차로 모양 정보를 이용하여 사용자가 질의한 영상과 유사한 영상을 최종적으로 검색한다 모양 정보를 위해서는 기존 불변 모멘트의 문제점인 많은 연산량과. Jain 등이 제시한 방향 히스토그램 인터섹션 방법에서 제기된 회전에 민감하다는 문제점을 해결하기 위해 물체의 윤곽선에 해당하는 화소들만을 대상으로 연산을 수행하는 향상된 불변 모멘트(Improved Moment Invariants : IMI)를 이용한다. 실험 영상으로 300개의 자동차 영상을 사용하여 기존 방법들과의 비교 실험을 통해 향상된 검색 결과를 얻을 수 있었다.
Keywords