Articles

Vibrational Analysis of Dopamine Neutral Base based on Density Functional Force Field

Sun-Kyung Park, Nam-Soo Lee, and Sang-Ho Lee ${ }^{\dagger}$
Department of Chemisty, Chungbuk Vational Lhiversity, Cheongju, Chungbuk 361-763, Korea
${ }^{\dagger}$ Biophusics Research Division and Deparment of Phesics, The Unversity of Aichigan, Ann . Athor, AII 48109, LSS 1
Received July 27, 2000

Abstract

Vibrational properties of dopamine neutral species in powder state have been studied by means of the normal mode analysis based on the force constants obtained from the density functional calculation at B3LYP level and the results of Fouricr ransform Raman and infrared spectroscopic measurements. At initio calculation at MP2 level shows that the trans conformer of dopamine has ligher electronic energy about $1 .+\mathrm{kcal} / \mathrm{mol}$ than those of the gauche + and the gouche - conformers. and two gauche conformers have almost the same encrgics. Free energies calculated at HF and B.LYP levels show very similar values for three conformers within $0.3 \mathrm{kcal} /$ mol. Empirical force field las been constructed from force constants of tluee conformers. and refined upon experimental Raman spectrum of dopamine to rigorous valucs. The major spccies of dopamine neutral base in the powder state is considered a trons conformer as slown in the cry stallographic study of dopamine cationic salt.

Introduction

Dopamine ${ }^{1}$ serves as a neurotransmitter in the central and sympathetic nerve system or as a hormone in vesicles of the adrenal medulla for the regulation of the heart beat rate and blood pressure. It is a rather simple species of an ethylamine base comected to the catechol ring. It could contain a proton at the ethylamine moiety to be a cationic species. or lose one or two protons at two hydroxyl groups of the catechol ring moiety to be a monoanionic. dianionic, or zwitterion-like species. Dopamine could have three staggered conformations through an etly lamine side chain. i.e.. a stretched trans. and two folded gonche conformations for each species possible. The structure or conformations of dopamine and the functions of dopamine moieties for the biological activities have been in great interest in chemistry or biological neurosciences. The structural studies via the spectroscopic methods, for example. X-ray crystallography, nuclear magnetic resonance. ${ }^{-}$and Raman scattering. ${ }^{\text {Yo }}, 3.5$ or $v i a$ the computational methods ${ }^{6-12}$ have been carried out and reported. Much attention so far had almost been concentrated on the study of the ionic species of dopamine. Vibrational studies are relatively rare compared to the other methods, however. Raman spectroscopic studies of dopamine were also reported for the species adsorbed on the metal surfaces. ${ }^{3-5}$ The vibrational analysis of any of the dopamine species has not been considerably studied yet so far.
Application ${ }^{13-16}$ of density functional theory (DFT) to chemistry has received much attention recently because of a faster consergence in time than the traditional quantum mechanical correlation methods in part. and improvements in the prediction of the molecular force field. vibrational frequencies, and dipole moments. Therefore the force field from DFT calculation could be utilized with the spectroscopic
data for the assignment of observed frequencies and the refinements of the molecular force field under study. The normal mode analy sis ${ }^{17.15}$ has been applied to elucidate the molecular system of chemistry and biological sciences using Wilsons GF matrix formulation. ${ }^{19}$ This matrix method has been enforced with improvements in the setup of internal coordinates, or in the computational method in the refinement procedure of the force field. It is now in progress to expand its application area to molecular dymamics studies as well as structural studies.

In the present study. the vibrational analysis of dopamine neutral base was investigated by normal mode analysis method using the spectroscopic Raman data and the force field obtained from DFT calculation to clarify the vibrational structure and conformation in a powder state of neutral base form.

Experimental and Calculation Methods

Dopamine HCl and NaOH were purchased of the highest purity from Tolyo Kasei Chenical and used as received without further purifications. To prepare sodium salt. dopamine $\cdot \mathrm{HCl}$ was mixed with equivalent amount of NaOH solution, and dried in vacuum with cooling. Bruker FRA106 Fourier transform spectrometer was applied in dry nitrogen purge mode to obtain Raman spectrum. It was equipped with 1064 mm cw Nd : YAG laser, a calcium fluoride beam splitter and liquid nitrogen cooled InGaAs detector for Rannan scattering. The laser power was about 0.2 watt at sample. The spectral resolution was set to $4 \mathrm{~cm}^{-1}$ and 100 times accumulated for each run. A sample powder was contained with tight packing for irradiation in ordinary melting point capillary tube (Drummond Scientific Co.). The infrared spectrunn was obtained using the Bruker IFS66 machine with MCT
detector. Nernst bar light source and $K B r$ beam splitter in the spectral resolution of $4 \mathrm{~cm}^{-1}$ and 100 times accumulated for cach run.
lnitial molecular structure was generated and optimized at AMI level using the PC Spartan Plus (Wavefunction. Inc.) and transferred to the Gaussian package (Gaussian. Inc.) for the optimization at the higher levels. For the drawing. CS CHEM3D PRO (CambridgeSoff Cooperation) was utilized. The energy corresponding to an optimized geometry was obtained at HF. MP2 and B3LYP levels and using the 631G** basis set. Raw Cartesian force constants and the intensitics of Raman and IR bands were obtained from a gcometry optimized fully using B3LYP functional and 6$31 \mathrm{G}^{* *}$ basis set. Calculated Cartesian force constants were transformed to a set of force constants in non-redundant local symmetry coordinates for a refinement procedure. The refinement procedure ${ }^{18}$ of rav force constants obtained from DFT calculation was carried out by minimizing the quantity χ^{2}.

$$
\chi^{2} \equiv \sum_{i-1}^{\text {NOFQ }}\left\{\omega^{\prime}(i) \cdot\left(v_{i}^{\text {phisereced }}-v_{i}^{\text {catculated }}\right)\right\}^{2}
$$

where $N O F Q$ is the total number of observed frequencies ($v_{1}^{\text {observed }}$) to be considered and $w^{\prime}(i)$ is the weight factor for the frequency of the the mode. The actual minimization of the quantity χ^{2} was done by the conjugate gradient method with a cube interpolation in cach line minimization using a least-square fitting program. Normal modes and frequencics of vibrations were calculated using the Wilson's Cl/ matrix method.

Ab initio Calculation and Normal Mode Calculation

The chemical structure of dopamine in the neutral base form is shown in Figure 1 with an index number for each atom. It has been known that three staggered conformations
shown in Figure 2, i.e., trans gauche- and gatche+ conformer are staged in each local minimum in encrgy. It can be described by wo dihedral angles of the ethylamine moicty. Each conformer was optimized and the energics were calculated using HF. MP2 and B3LYP functions. Their relatise energies to the minimum energy noted in $0.000 \mathrm{kcal} / \mathrm{mol}$ are displayed with dipole moments calculated by each liunction in Table 1.

Each conformation optimized at B3LYP/6-3lG** level was applied to calculate the frequencies of the normal coordinates and the force constant matrix in Cartesian coordinate at the B3LYP level with the same basis set The isotope atomic masses adapted were 12.01115 for carbon. 14.00307 for nitrogen. 15.9994 for oxygen. and 1.007825 for hydrogen. respectively. The temperature was set to 298.15 K and the pressure to 1.0 atm . Raman spectra of threc conformers obtained initially by calculation are shown in Figure 3. Each band displayed in Figure 3 was shaped according to the Lorent/ line shape $\left(R(\omega)=(\mathrm{FWHH} / 2)^{2} / 5\left(\omega_{0}-\omega\right)^{2}+(\mathrm{FWHH} /\right.$ $2)^{2}$ \}. FWHH: the full width at hall-height. $\omega_{0}=$ a resonant frequency) with the full-width at halr height. $5.0 \mathrm{~cm}^{-1}$. With applying the scale factor of 0.96 to the frequencies obtained From DFT calculation. the Raman spectra of three staggered

trans

gauche-

gauche ${ }^{+}$

Figure 2. Three staggered conformations (trons, ganche'- and gauche+) of dopamine neutral base.

Figure 1. Molecular structure of dopamine neutral base in the trons confonnation with index numbers.

Table 1. Calculated Relative Fnergies and Dipole moments at 298.15 K and 1.0 atm for Chee Confomers of Dopanime neural buse, trans, ganche+ and ganche-

Dopamine Neutral Base		trans	garche ${ }^{-}$	genthe ${ }^{-}$
111/6-316 ${ }^{* *}$	$\Delta E_{\text {rfor }} / \mathrm{kcal} / \mathrm{mol}^{*}$	0.116	0.000	0.021
	ZPC/Itarlice	0.196171	0.196386	0.196358
	$\Delta E_{T} / \mathrm{kcal} / \mathrm{mol}$	0.094	0.000	0.016
	$\Delta H_{\text {fical }} / \mathrm{mol}$	0.094	0.000	0.016
	$\Delta G_{i} / \mathrm{kcal} / \mathrm{mol}$	0.000	0.239	0.215
	Dipole/Debre	3.6259	3.4291	2.8607
MP2/6-31G**	$\Delta E_{\text {etp }} / \mathrm{kcal} / \mathrm{mol}$	1.360	0.018	0.000
	Dipole/Debye	3.8801	3.4759	3.0718
$\overline{\mathrm{B} 3 \mathrm{LYP} / 6-31 \mathrm{C}^{* *}}$	$\Delta E_{\text {efo }} / \mathrm{kcal} / \mathrm{mol}$	0.938	0.021	0.000
	$\angle P C / 1$ lartice	0.182956	0.183285	0.183280
	$\Delta E_{T} / \mathrm{kcal} / \mathrm{mol}$	0.885	0.032	0.000
	$\Delta H_{\text {fikcal }} / \mathrm{mol}$	0.885	0.032	0.000
	$\Delta G_{i} / \mathrm{kcal} / \mathrm{mol}$	0.326	0.000	0.01 .3
	Dipole/Debre	3.4011	3.2184	2.8876

"A Filac: relative electronic energy: $\angle I^{2} \mathrm{C}$: zero-point correction energy. ΔE_{γ} : relative summation of electronic and themal energies. ΔJ_{T} : relative summation of electronic and themal enthalpies. AG7. relative summation of electronic and themal free energies.
confomations are displayed in Figure 3. The Raman intensities obtained initially from the DFT calculation were scaled for the better view to the tenth power of the inverse of frequency difference from the laser excitation line 1064 nm because the Raman band intensitics located in the stretehing region above $2800 \mathrm{~cm}^{-1}$ were calculated with huge amounts.

The intental coordinates of dopamine of total 22 atoms consist of 22 stretching coordinates (Δr) numbered R1 to R22. 35 in-plane defomation coordinates ($\Delta \theta$) numbered R23 to R57. 9 out-of-plane deformation coordinates ($\Delta \omega$) numbered R58 to R66. and 11 torsion coordinates ($\Delta \tau)$ numbered R67 to R77. They are delined based on the atomic numbering scheme in Figure 1 and shown in Table 2 with molecular structural parameters of the trons conformer for

Figure 3. Raman spectra of three staggered conformations scaled with a scale factor 0.96 for vibrational frequencies oblainad initially from the DPI'l calculations: (A) gatiche-, (B) gauche+, and (C) trons. Fach peak was adjusted to the Iorentr line shape with FWHH $5.0 \mathrm{~cm}^{-1}$, and the intensities obtamed from the DFT calculations were sealed to the frequency difference from 1064 rm excitation laser wavelength.
reference
The local symmetry coordinates adapted for dopamine are shown in the format of non-nomalized in Table 3 with descriptions in terms of the internal coordinates R defined in Table 2. Here, we did not utilize the symmetry property of the benzene ring because the catechol moiety of dopamine is a tri-substituted ring system. Each localized chemical bond in the catechol ring was regarded as a local symmetry coordinate. instead. A complete set of 60 local symmetry coordi-

Table 2. Intenal Coordinates of Dopamine (R : the index number of internal coordinates, A toms: the index number indicated in Figure 1.) and Molecular Structural Parameters

R	Name"	Atoms	K Name	Aloms
1	$\Delta \mathrm{r}(\mathrm{C}-\mathrm{N})$	1-2 (1.466 $\lambda)^{\text {b }}$	40) $\Delta \theta(C C C)$	11-9-12 (118.60)
2	$\operatorname{Ar}(\mathrm{C}-\mathrm{C})$	1.5 (1.538 $)$	$41 \Delta a(C C C)$	$9-11-14$ (120.9")
3	$\Delta \mathrm{r}(\mathrm{C}-\mathrm{H})$	1-3 (1.096 ${ }^{\text {a }}$)	$42 \Delta \mathrm{aCCH})$	$9-11-15$ (119.8)
4	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{H})$	1-4 (1.105 ${ }^{\text {(1.07 }}$)	$43 \Delta \theta(\mathrm{CCH})$	14-11-15 (119.30)
5	$\Delta \mathrm{r}(\mathrm{N}-\mathrm{H})$	2-6 (1.017 λ)	$44 \Delta \mathrm{aCCC})$	9-12-13 (121.00°)
6	$\Delta \mathrm{r}(\mathrm{N}-\mathrm{H})$	$2-7$ (1.018 ${ }^{\text {2 }}$)	$45 \Delta \mathrm{CCCH})$	9-12-16 (120.8 ${ }^{\circ}$
7	$\mathrm{Ar}(\mathrm{C}-\mathrm{C})$	5-9 (1.51.3 ${ }^{\text {a }}$)	$46 \mathrm{AACCH})$	13-12-16(118.10)
8	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{H})$	5-8 (1.095 ${ }^{\text {d }}$)	$47 \triangle \mathrm{ACCC})$	12-13-17 (119.50)
9	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{H})$	5-10 (1.098 1)	$48 \Delta \mathrm{ACCO})$	12-1.3-18 (120.10)
10	$\triangle \mathrm{r}(\mathrm{C} \sim \mathrm{C})$	9-11 (1.398 1)	$49 \mathrm{AaCCO})$	17-1.3-18 (120.30)
11	$\Delta \mathrm{r}(\mathrm{C} \sim \mathrm{C})$	9-12 (1.40.3 ${ }^{\text {a }}$)	$50 \mathrm{AaCCC})$	11-14-17 (119.93)
12	$\triangle \mathrm{r}(\mathrm{C} \sim \mathrm{C})$	11-14 (1.399 λ)	il \triangle a CCH)	11-14-19 (120.4*)
13	$\Delta \mathrm{r}(\mathrm{C}-\mathrm{H})$	$11-15$ (1.086 λ)	$52 \Delta \mathrm{ACCH})$	17-14-19 (119.8)
14	$\triangle \mathrm{r}(\mathrm{C} \sim \mathrm{C})$	12-1.3 (1.391 λ)	$53 \triangle A(C C C)$	13-17-14 (120.1^{10})
15	$\Delta \mathrm{r}(\mathrm{C}-\mathrm{H})$	12-16 (1.086 λ)	$34 \triangle A(C C O)$	13-17-21 (115.0 0°)
16	$\operatorname{Ar}(\mathrm{C} \sim \mathrm{C})$	13-17 (1.406 A)	is \triangle acco $)$	14-17-21 (124.90)
17	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{O})$	13-18 (1.364 λ)	$56 \Delta A(\mathrm{COH})$	13-18-20 (107.4*)
18	$\Delta \mathrm{ar}(\mathrm{C} \sim \mathrm{C})$	14-17 (1.389 λ)	$57 \Delta A(\mathrm{COH})$	17-21-22 (109.7)
19	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{H})$	14-19 (1.088 λ)	$58 \Delta \omega(\mathrm{CNCH})$	2-1-5-3
20	$\Delta \mathrm{t}(\mathrm{C}-\mathrm{O})$	17-21 (1.379 A)	$59 \Delta \omega(\mathrm{CCHH})$	-2-6-7
21	$\Delta \mathrm{t}(\mathrm{O}-\mathrm{H})$	18-20 (0.969 λ)	$60 \Delta \omega(\mathrm{CCCH})$	-5-9-8
22	$\Delta \mathrm{t}(\mathrm{O}-\mathrm{H})$	$21-22(0.965 \wedge)$	$61 \Delta \omega(\mathrm{CCCC})$	5-9-11-12
23	\triangle (NCC)	2-1-5 (110.4)	$62 \Delta \omega(\mathrm{CCCH})$	-11-14-15
24	\triangle (HCC)	3-1-5 (108.8)	$63 \Delta \omega \mathrm{CCCH})$	-12-1.3-16
25	\triangle (HCC)	$4-1-5\left(108.7{ }^{\prime \prime}\right)$	$64 \Delta \omega \times C C O)$	12-13-17-18
26	$\Delta \in(\mathrm{NCH})$	$2-1-3\left(1080^{\circ}\right)$	$65 \Delta \omega(\mathrm{CCCH})$	11-14-17-19
27	$\Delta \in(\mathrm{NCH})$	2-1-4 (114.4*)	$66 \Delta\left(\begin{array}{ccc} \\ \\ \\ \text { c }\end{array}\right.$	13-17-14-21
28	\triangle (HCH)	3-1-4 (1064*)	$67 \Delta \pi$ (${ }^{(1) N)}$	1-2
29	$\triangle(1 \mathrm{CNH})$	1-2-6 (109.9)	$68 \Delta \pi \mathrm{C}-\mathrm{C})$	1-5
30	$\Delta \in(\mathrm{CNH})$	1-2-7 (109.6)	$69 \Delta \pi(C-C)$	5-9
31	$\Delta \in(\mathrm{HNH})$	6-2-7 (1060 0°	70 $\left.\Delta \pi^{\prime} \mathrm{C}-\mathrm{C}\right)$	$9-11$
32		1-5-9 (112.9 ${ }^{\circ}$)	$\left.71 \Delta \pi{ }^{(} \mathrm{C}-\mathrm{C}\right)$	9-12
33	$\triangle G(\mathrm{HCC})$	$8-5-9\left(110.7^{\circ}\right)$	$\left.72 \Delta \pi{ }^{(1)} \mathrm{C}-\mathrm{C}\right)$	11-14
34	$\Delta \in(\mathrm{CCH})$	1-5-8 (108.0 0°)	$73.4 \pi \mathrm{C}-\mathrm{C})$	12-1.3
35	$\Delta \in(\mathrm{CCH})$	1-5-10(108.8)	$\left.74 \Delta \pi{ }^{\prime} \mathrm{C}-\mathrm{C}\right)$	13-17
36	$\triangle \theta(\mathrm{CCH})$	9-5-10(109.6)	$75 \Delta \pi(\mathrm{C}-\mathrm{O})$	13-18
37	\triangle (HCH)	$8-5-10\left(106.6{ }^{\circ}\right)$	$\left.76 \Delta \pi{ }^{\prime} \mathrm{C}-\mathrm{C}\right)$	14-17
38		5-9-11(121.2 ${ }^{\text {c }}$)	$\left.77 \Delta \pi{ }^{(} \mathrm{C}-\mathrm{O}\right)$	17-21
39	$\triangle A(C C C)$	5-9-12(120.2")		

[^0]Table 3. Local Symmetry Coordinates used for Dopamine (R : the index number of internal coordinates listed in lable 2, S the index number of local symmetry coordinates adapled, All the redundant lowal symmetry coordinates are not listed.)

S	Name ${ }^{\text {a }}$	Local Sym. Coordinate	Description
1	$v\left(\mathrm{C}_{6} \mathrm{~N}\right)$	R1	C-N strecthing
2	$v\left(\mathrm{C}_{16} \mathrm{C}_{i b}\right)$	R2	C-C stretching
3	$v(\mathrm{Coll2}$)	R3+R4	CIL2 sym. Strelching
4		R3-R4	CIL2 antisym. strotching
5	v (NIL2)	R $5+\mathrm{R} 6$	NIL2 sym. stretehing
6	$v_{(0)}(\mathrm{N} 112)$	R5-R6	NII2 antisym. stretching
7	$4\left(\mathrm{C}_{0}-\mathrm{C}_{p}\right)$	R7	C-C stretching
8	$v(\mathrm{CiH2} 2)$	R8+R9 9	Cl12 sym. Stretching
9	$v_{c}\left(\mathrm{C}_{\mathrm{j}} \mathrm{IL} 2\right)$	R8-R9	CIL2 antisym. stretching
10	$4\left(\mathrm{Com} \mathrm{C}_{11}\right)$	R10	ning C C C stretching
11		R11	ring Can stretching
12	$\mathrm{VC}_{11}-\mathrm{Cl}_{14}$	R12	ring Cact stretching
13	($\mathrm{C}-\mathrm{H}_{1}$)	R13	ring $\mathrm{C}-11$ stretching
14	$4\left(C_{12}-C_{13}\right)$	R14	ning C C C stretching
15	($\mathrm{C}-\mathrm{H}_{6}$)	R15	ring C-LI stretching
16		R16	ring C C - stretching
17	$\mathrm{W}\left(\mathrm{C}-\mathrm{O}_{\mathrm{m}}\right)$	R17	C-O) strelching
18		R18	ring C C - stretching
19	$\cdots\left(\mathrm{C}-\mathrm{H}_{10}\right)$	R19	ring $\mathrm{C}-11$ stretching
20	$\mathrm{V}\left(\mathrm{C}-\mathrm{O}_{1}\right)$	R20)	C-O stretching
21	($\mathrm{O}-\mathrm{I} \mathrm{Im}^{\prime}$)	R21	O-HI strelching
22	($\mathrm{O}-\mathrm{H}_{5}$)	R22	$\mathrm{O}-\mathrm{HI}$ strecthing
23	$\delta \mathrm{NCC})$	5R23-R24-R25-R26-R27-R28	$\mathrm{N}-\mathrm{C}-\mathrm{C}$ detomation
24	δ (C, C_{12})	4R28-R24-R25-R26-R27	CIL2 scissoring
25	$\delta_{n}\left(\mathrm{CaILI}^{\text {a }}\right.$)	R24+R25-R26-R27	Cl12 wagging
26	$\delta_{r}\left(\mathrm{C}, \mathrm{cl}^{1} \mathrm{~L} 2\right)$	-R24+R25-R26+R27	CIL2 rocking
27	$\delta_{\mathrm{S}}(\mathrm{Cali2})$	-R24+R25+R26-R27	C12 twisting
28	$\delta_{i}(\mathrm{NHI} 2)$	2R31-R29-R30	NIL2 sym. bending (scissors)
29	$\delta_{\text {d }}$ (112)	R29-R30	NIL2 antisym.bending (twist)
30	$\delta(1)$	5R32-R33-R34-R35-R36-R37	C-C-C defomation
31	$\delta_{i}(\mathrm{C} / \mathrm{d} \mathrm{L} 2)$	4R37-R33-R34-R35-R36	Cl12 scissoring
32	$\delta_{n}\left(\mathrm{C}_{\mathrm{c}} \mathrm{IL} 2\right)$	R33-R34-R35+R36	CIL2 wagging
33	$\delta_{r}\left(\mathrm{C}_{(1 \mathrm{l}} \mathrm{l} 2\right)$	-R33-R34+R35+R36	C112 rocking
34	$\delta\left(\mathrm{C}_{3} \mathrm{~L} 2\right)$	-R33+R34-R.35+R36	CIL2 twisting
35	$\delta\left(\mathrm{C}_{j}-\mathrm{C} \sim \mathrm{C}\right)$	R38	C~C-C lending
36	8 ($\sim(\mathrm{Cm})$	R40	ring $\mathrm{C} \sim \mathrm{C} \sim \mathrm{C}$ bending
37	$\delta\left(\mathrm{C}-\mathrm{C}-1 \mathrm{l}_{1} \mathrm{C}\right)$	R43	C C-HI mending
38	$\delta\left(C \sim C-11_{10}\right)$	R45	C-C-H bending
39	$8\left(\mathrm{Cu}\left(\mathrm{C}_{1} \mathrm{C}\right)\right.$	R.47	ring C~CMC bending
40)	$8\left(\mathrm{C} \sim\left(\mathrm{C}-\mathrm{O}_{\mathrm{m}}\right)\right.$	R 48	C-C-O bending
41	$8\left(\mathrm{Cu}\left(\mathrm{C}_{4}+\mathrm{C}\right)\right.$	R50	ring C~Cm C bending
42	$\delta\left(\mathrm{Cm}\left(\mathrm{C}-11_{14}\right)\right.$	R52	C-C-II bending
43	$\delta\left(\mathrm{CO}-\mathrm{CO}_{1}\right)$	R54	C-C-O bending
44		R56	C-O-HI bunding
45	$\delta\left(\mathrm{C}^{(0)} \mathrm{O}_{\mathrm{p}}-11\right)$	R57	C-O-HI bending
46	$\delta(\mathrm{Nl2})$	$\mathrm{R} 29+\mathrm{R} 30+\mathrm{R} 31$	NIL2 psiudopuckering (wag)
47	$\left.\times \mathrm{COCO}_{5}\right)$	R61	ring-C out-oi-planc
48	(CCCOH_{5})	R62	ring- Hl out-oi-planc
49	(CCOH_{16})	R63	ring-H out-oi-planc
50	($\mathrm{CCOO}_{\text {m }}$)	R64	ring-O out-oi-planc
51	$\mathrm{xCCCI}_{19}{ }^{\text {) }}$	R65	ring-H out-oi-planc
52	(CCCO_{p})	R66	ring-O out-oi-planc
53	$\left.\pi-\mathrm{C}_{4} \mathrm{~N}-\right)$	R67	side chain $\mathrm{C}-\mathrm{N}$ torsion

Table 3. Continued

S	Name ${ }^{\prime \prime}$	Local Sxm. Coordinate	Description
54	$\tau\left(-\mathrm{C}_{j p}-\mathrm{C}_{w}\right)$	R68	side chain C -C torsion
55	$\pi\left(-\mathrm{C}_{1,}, \mathrm{C}_{1},-\right)$	R69	side chain C-C torsion
56	$\pi\left(-\mathrm{Cin}_{2-\mathrm{C}}^{10}\right.$)	R70	ring $C \sim C$ torsion
57	$\pi\left(-\mathrm{C}_{12}-\mathrm{C}_{18}-{ }^{\text {a }}\right.$	R73	ring $C \sim C$ torsion
58	$\pi\left(-\mathrm{C}_{14}-\mathrm{C}_{1}-{ }^{-}\right)$	R76	ring $\mathrm{C} \sim \mathrm{C}$ (torsion
59	$\mathfrak{\sim}\left(-\mathrm{C}^{\left(-\mathrm{O}_{m 1}-\right)}\right.$	R75	hydroxyl C-O torsion
60	π (-C- $-\mathrm{O}_{\mathrm{p}}-{ }^{-}$	R77	hydroxyl $\mathrm{C}-\mathrm{O}$ torsion

 position. Om: oxygen at meta position, On: oxygen at para position, \cdots : carbon-carbon bond in catechol ritng. All subscript numbers at the right of atomic șmbols are the index numbers indicated in Figure 1
nates named Sl to S 60 was constructed eliminating all the redundant symmetry coordinates. They are 22 stretching modes (symbol name: v) numbered S1 to S22.24 in-plane deformation modes (symbol name: δ) numbered S23 to $S 46$. 6 out-of-plane deformation modes (symbol name: γ) numbered S47 to S 52 . and 8 torsion modes (symbol name: τ) numbered S 53 to S 60 . For the better inspection. we used general chemical symbols $C_{\alpha x}$ and C_{β} for carbon atoms in the ethylamine moicty and O_{1} and O_{11} for oxygen atoms in the catechol moicty. i.e.. carbon (1) to C_{2} carbon (5) to C β. oxygen (21) to O_{p}. and oxygen (18) to O_{m}. The chemical bond between carbon atoms in the catechol ring was noted to $\mathrm{C} \sim \mathrm{C}$. All subscript numbers at the right of the atomic symbols are the index numbers indicated in Figure 1.
Raw Cartesian force constants matrix obtained from DFT calculation was. as usual. overestimated. The least-square fitting to the experimental frequencies was performed via scaling down the force constants in the internal coordinates converted from a matrix in the Cartesian coordinate. The number of the force constants gencrated initially in the internal coordinate was 1830 that is the sum of all diagonal and half off-diagonal matrix elements. These are too many to account for. so reduced to a comparable number of force constants using a boumdary value in the internal coordinate force constant matrix. The number of force constants out of 1830 could be extracted to 280 for the trons conformer. 282 for the gatche + conformer. and 305 for the gatche- conformer, respectively, when the absolute value of the off-diagonal matrix elements equal to or greater than 0.05 are survived and all the diagonal matrix elements are included. This boundary value 0.05 was rather arbitrary chosen because the off-diagonal elements less 0.05 are presumed to be minimal enough to be neglected for the structural elucidation. We feel that this gives a comparable and satisfactory set of constraints on the refinement procedure we are trying for a 22 atom system. The number of acting force constants to be considered in the internal coordinate was finally reduced to 305 counting on three different sets of matrix and then scaled with a proper scale factor. The matrix of these scaled force constants was then transformed to a matrix in the Cartesian coordinate. which was applied to calculate the frequencies using Wilson's GF matrix method. This refining procedure was repeated manually until it gave a minimal
discrepancy from experimentally obseried Irequencies. Relined lorce constants of the diagonal matrix elements and off-diagonal matrix elements in the local symmetry coordinate scheme are shown in Table 4 and Table 5, respectively. Using these values. the frequencies and potential energy distributions were oblained and shown in Table 6 in terms of local symmetry coordinates delined in Table 3. For comparison. scaled frequencies using the exponential scaling method. ${ }^{23}$ $\alpha($ scaled $)=\omega_{i} \operatorname{cxp}(-\alpha 0)$. where α is the exponent of the exponential scale factor. and ω is the calculated frequencies of mode i were shown in Table 6. logether.

Results and Discussion

$A b$ initio Calculations. The energics of three conformers in the vapor phase. i.e.. a stretched trons. a folded gouthe + and a tightly folded gatiche-displayed in Figure 2 were calculated from geometrics optimized with HF/6-31G**. MP2/ $6-31 \mathrm{G}^{* *}$. and B3LYP/6-31G** functions. respectively. and shown in Table 1. The HF and B3LYP levels with $6-31 \mathrm{G}^{* *}$ basis functions are affordable for the free energy and the enthalpy change calculations with the frequency test mode. not like MP2 level. So. the free energy and cnthalpy values at MP2 level were not calculated. The relative electronic energies ($\Delta E_{\text {elec }}$ at 298 K and 1.0 atm) from HF level are similar for three conformers within $0.2 \mathrm{kcal} / \mathrm{mol}$. favoring the gatache + conformation only $0.12 \mathrm{kcal} / \mathrm{mol}$ to the trans. But. the gantche-conformer is favored in $1.4 \mathrm{kca} / / \mathrm{mol}$ to the trans when introducing the electron correlation of MP2. The electronic quantities from density functional theory show the gatiche- conformer is lower in $1.0 \mathrm{kcal} / \mathrm{mol}$ for B3LYP level to the trans. The gatuche+ and gatuche- conformer lave the very close values less $0.02 \mathrm{kcal} / \mathrm{mol}$ in the electronic quantities.

Counting the enthalpy change (ΔH_{T}) corrected with thermal quantity $(+R 7)$ and the entropy effect $(-T \Delta S)$, the free energies (ΔG_{T} at 298 K and 1.0 atm) are closely similar and the differences are minimal to about $0.3 \mathrm{kcal} / \mathrm{mol}$. The trons conformation is favored in $0.24 \mathrm{kcal} / \mathrm{mol}$ to the gatuche + and gatione- at HF level. but the gatuche+ conformation is lower in $0.33 \mathrm{kcal} / \mathrm{mol}$ to the troms at B3LYP level. The free energies for the gouche+ and gauche - conformations are as well very close to each other within $0.02 \mathrm{kcal} / \mathrm{mol}$ at both HF and

Table 4. Refined Diagonal Force Constants (mdyne/ \AA or Liquivalent mit for bending or torsion) (S : the index number of local symunetr coordinates listed in lable 3)

(S, S)	Force	(S, S)	Force	(S, S)	Force
(1,1)	4.7286	$(2,2)$	3.5143	(3.3)	4.8150
(4, 4)	4.7280	$(5,5)$	5.2900	(6.6)	5.1730
(7,7)	4.1980	$(8,8)$	4.6600	(9,9)	4.6610
(10,10)	6.7170	(11,11)	6.4135	(12.12)	6.5914
(13,13)	5.0170	$(14,14)$	6.9006	(15.15)	50860
$(16,16)$	6.5130	(17,17)	6.1006	(18.18)	7.0480
(19,19)	4.9630	(20,20)	5.6848	(21.21)	6.2551
$(22,22)$	6.2610	(23,23)	0.9889	(24,24)	0.5911
(25,25)	0.6781	$(26,26)$	0.9656	$(27,27)$	0.6759
(28,28)	0.6308	(29.29)	0.7858	(30,30)	0.9908
(31,31)	0.5867	(32.32)	0.5115	(33,33)	0.6636
(34,34)	0.5078	(35.35)	1.5316	$(36,36)$	3.1360
$(37,37)$	1.0815	(38.38)	1.0063	(39,39)	3.5200
(40,40)	1.9589	(41.41)	3.0931	$(42,42)$	1.0761
(4, 4,43$)$	2.1196	(4, 4,44)	0.8817	(45.45)	0.7676
(46,46)	0.7089	(47,47)	38503	(48.48)	3.3725
(49,49)	3.2509	$(50,50)$	3.9083	(51,51)	3.3223
$(52,52)$	3.8272	$(53,53)$	0.0745	$(54,54)$	0.3359
(55.55)	0.1562	$(56,56)$	0.8022	$(57,57)$	0.7318
(58.58)	0.8053	$(59,59)$	0.1594	(60,60)	0.0138

Table 5. Retined Off-Diagonal Foree Constants (mdyne/ λ or Liquivalent unit for bending or torsion) (S: the index number of local symunetry coordinate listed in lable 3)

(S, S)	Force	(S, S)	Force	(S, S)	Force
(2,1)	0.2729	(3.1)	0.2119	(3,2)	0.1250
$(5,1)$	0.0490	(7.2)	0.3055	(8,2)	0.1102
(8,7)	0.0814	(10.7)	0.1803	(11,7)	0.1744
(11,10)	1.0336	(12.10)	0.6453	(12,11)	-0.4320
(13.10)	0.1292	(13.12)	0.1240	(14,10)	-0.5378
(14.11)	0.5906	(14.13)	-0.0546	$(15,11)$	0.1345
(15.12)	-0.0569	(15.14)	0.1195	(16,11)	-0.5402
(16.12)	-0.4716	(16.13)	-0.0462	(16,14)	0.8785
(17.12)	0.1122	(17.14)	0.3925	(17,16)	0.2976
(18.10)	-0.6623	(18.11)	-0.0442	(18,12)	0.9501
(18.14)	-0.5357	(18,15)	-0.0636	(18,16)	0.6185
(19.12)	0.0661	(19,18)	0.0601	(20,10)	-0.2287
(20.11)	-0.1300	(20,16)	0.5872	(20,17)	0.0996
(20.18)	0.4731	$(21,17)$	0.0884	(22,16)	-0.0560
(23.1)	0.2696	$(23,2)$	0.2264	$(23,3)$	-0,0900
(23.5)	-0.0601	$(23,9)$	-0.0687	$(24,1)$	-0.2213
(24.2)	-0.1388	$(24,3)$	0.0995	$(25,1)$	-0.4302
(25.2)	0.1907	$(26,4)$	-0.1586	$(26,6)$	-0.0656
(27.26)	0.0664	(28, 1)	-0.2485	(28,5)	0.1355
(29.6)	0.0971	(29,26)	-0. 1216	(29,27)	-0.0284
(30.2)	0.2642	(30,4)	-0.0563	(30,7)	0.0189
(30.8)	-0.0977	(30,23)	00385	(30,27)	0.0487
(31.2)	-0.0973	$(31,7)$	-0.0954	(31, 8)	0.1026
$(32,2)$	-0.1959	$(32,7)$	0.2842	$(33,1)$	0.0010
$(33,2)$	0.0267	(33,9)	-0.1489	(33,26)	0.0969
$(33,30)$	0.0619	$(34,23)$	-0.2929	$(35,2)$	-0.0740
$(35,9)$	0.0963	$(35,10)$	0.3174	$(35,11)$	-0.2956
$(35,16)$	0.0370	(35,21)	-0.0.454	(35,30)	-0.0360

Table 5. Continued

(S, S)	Force	(S, S)	Force	(S, S)	Force
(35.34)	-0.0492	(36.7)	-0. 3620	$(36,10)$	0.9681
(36.11)	0.5179	(36,12)	-0. 3283	(36,13)	0.1287
(36.14)	-0.3081	(36,15)	0.1850	(36,16)	-0.4653
(36.18)	-0.4846	(36.20)	-0. 1947	(36,30)	0.0360
(36.32)	-0.0356	(36,34)	-0. 1342	(36.35)	0.7826
(37.10)	-0.5307	(37,11)	-0.0480	(37,14)	0.1756
(37.16)	0.2017	(37,18)	0.0540	(37,36)	-0.4441
(38.10)	0.1261	(38.12)	0.2226	(38,14)	-0.4091
(38.16)	-0.0012	(38.18)	0.1985	$(38,36)$	-0.2420
(39.10)	-0.5727	(39,11)	-0.4313	$(39,12)$	-0.4679
(39.14)	0.8998	(39,15)	0.1364	(39,16)	0.3543
$(39,17)$	-0.0.354	(39.20)	0.2911	(39,21)	0.0599
$(39,36)$	-0.1350	(39,37)	0.1264	(39,38)	-0.3046
$(40,11)$	-0.1790	(40,14)	0.2657	$(40,16)$	-0.4444
$(40,17)$	0.0448	(40,18)	0.1306	(40,21)	0.0583
$(40,35)$	0.0565	(40,36)	-0.2823	$(40,38)$	-0.0005
(40,39)	1.0570	(41,10)	-0.3354	(41,11)	-0.4337
$(41,12)$	0.5149	(41,13)	0.1343	(41,14)	-0.4992
$(41,16)$	-0.2133	(41,18)	1.0321	(41,19)	-0.1834
$(41,20)$	0.3258	(41,22)	-0.0716	(41,35)	-0.1721
$(41,36)$	0.0031	(41.37)	-0.2569	$(41,38)$	0.1821
(41,39)	0.1319	(41.40)	0.1426	(42,11)	0.0492
$(42,12)$	-0.2262	(42,18)	0.1917	(42,36)	0.1078
$(42,39)$	-0.0562	(42.41)	0.4546	(4, 10)	0.2655
$(4,311)$	0.4350	(43,16)	0.1516	$(4,3,17)$	-0.2247
(4, 18)	-0.7369	(43.20)	0.2534	$(4,22)$	0.1087
$(4,36)$	0.2760	(43.39)	-0.5049	(43,41)	-0.5951
$(44,17)$	0.4529	(44.21)	0.2260	(44,40)	0.0272
$(44,43)$	-0.0457	(45.20)	0.3540	$(45,22)$	0.1436
$(45,43)$	-0.0068	(46.1)	0.4924	(46,5)	0.3467
$(47,2)$	-0.0547	(47.7)	0.0255	(47,11)	-0.1496
(47, 14)	-0.0556	(47.16)	0.08 .32	(47,17)	0.0414
$(47,21)$	-0.1116	(47.2.3)	-0.0260	(47,26)	-0.0163
$(47,30)$	0.0123	(47.32)	-0.0289	(47,35)	0.0810
$(47,36)$	0.1145	(47.39)	-0.1607	(47,40)	-0.1547
$(47,43)$	0.1113	(47.44)	0.0798	(48,30)	-0.1340
(48,39)	0.0514	(48.40)	0.0979	$(48,47)$	-0.1788
$(49,1)$	-0.0320	(49.23)	-0.08.34	(49,35)	-0.0786
$(49,40)$	-0.0954	(49.47)	0.4233	$(49,48)$	0.4779
$(50,47)$	-0.4816	(50.48)	0.5827	$(50,49)$	0.4644
$(51,47)$	0.3230	(51.48)	0.7697	(51,49)	0.6274
$(51,50)$	0.6621	(52.47)	-0.5176	(52,48)	0.2530
(52,49$)$	-0.6493	(52.30)	0.4737	(52,51)	-0.5799
($54,3,3)$	0.1530	(54:47)	-0.0102	(55,23)	0.0053
$(55,30)$	-0.0221	(56.30)	-0.1536	$(56,47)$	0.4386
(56,48)	0.4580	(56,49)	0.4346	(56,50)	0.1490
(56,51)	0.2966	(56,52)	-0.1275	(57,30)	0.0402
(57,35)	-0.0019	(57,47)	-0.1878	$(57,48)$	0.0168
$(57,49)$	-0.2671	(57,30$)$	0.0828	(57,51)	-0.1567
$(57,52)$	0.4924	(58,47)	0.0725	(58,48)	-0.3.320
(58,49)	-0.1684	(58,50$)$	-0. 5077	(58,51)	-0.5301
(58,52)	-0.0808	(50,35)	-0.104.	$(59,47)$	-0.0065
(59,48)	0.0828	(59,30$)$	0.0408	(59,52)	-0.0.360
(60,49)	0.0822	(60,52)	0.0025		

Table 6. Observed Kaman and Calculated Frequencies (cm ${ }^{1}$) of Dopamine and Potential Linergy Distribution (\%)

Obs.	Calc."	Calc ${ }^{3}$	Potential Energy Distribution (greater than 5.6\%)
3345	3502	3346	$100 \times(\mathrm{O}-\mathrm{Hp})$
334.3	3450	334.3	$100 v(\mathrm{O}-\mathrm{Hm})$
3081	3270	3081	$100 v_{0}(\mathrm{NH} 2)$
3054	3198	3054	$100 v_{s}(\mathrm{NH} 2)$
3044	2960	30.44	$99 \times\left(\mathrm{C}-\mathrm{H}_{11}\right)$
3025	2953	3025	$92 v\left(\mathrm{C}-\mathrm{H}_{15}\right), 7 \mathrm{n}\left(\mathrm{C}-\mathrm{H}_{10}\right)$
3008	2931	3008	$93 v\left(\mathrm{C}-\mathrm{H}_{19}\right) .7 \mathrm{n}\left(\mathrm{C}-\mathrm{H}_{15}\right)$
2963	2861	2964	
2938	2849	2938	
2923	2821	2922	$98 v_{s}\left(C_{j} 12\right)$
2876	2813	2876	$100 v_{s}\left(\mathrm{C}_{4} \mathrm{~L} 22\right)$
1617	1610	1617	
1602	1608	1602	$97 \delta_{2}(\mathrm{NH} 2)$
1581	1591	1581	$\begin{aligned} & 26 v\left(\mathrm{C}_{11}-\mathrm{C}_{15}\right), 24 v\left(\mathrm{C}_{12}-\mathrm{C}_{1}\right), 15 \delta\left(\mathrm{C} \sim \mathrm{C}_{13}-\mathrm{C}\right), 14 v\left(\mathrm{C}_{12}-\mathrm{C}_{11}\right), 14 u\left(\mathrm{C}_{9}-\mathrm{C}_{12}\right), 8 \delta\left(\mathrm{C}-\mathrm{C}-\mathrm{O}_{1}\right), 7 \mathrm{v}\left(\mathrm{C}-\mathrm{O}_{11}\right) \\ & 7 \delta\left(\mathrm{C}-\mathrm{C}_{1,1}-\mathrm{C}\right), 7 \delta\left(\mathrm{C} \sim \mathrm{C}-\mathrm{H}_{1}\right) \end{aligned}$
1496	1504	1496	
1470	1456	1471	$90 \delta_{(}\left(\mathrm{C}_{j} \mathrm{~L} 12\right)$
1457	1446	1457	
1449	1442	1450	
1350	1357	1350	
1341	1353	1341	$93 \delta_{1}\left(\mathrm{C}_{61} \mathrm{~L} 2\right)$
*	1343	1332	
1322	1315	1322	
1287	1308	1288	
1272	1284	1272	
1260	1254	1260	70) $\delta_{0}\left(\mathrm{C}_{4 x} \mathrm{H} 2\right), 21 \delta_{0}(\mathrm{NH} 2)$
1206	1206	1205	
1187	1182	1187	
1175	1152	1175	$\begin{aligned} & 22 v\left(\mathrm{C}_{11} \mathrm{C}_{1+}\right), 19 \delta\left(\mathrm{C}_{-} \mathrm{O}_{p}-\mathrm{H}\right), 15 \delta\left(\mathrm{C}^{2}-\mathrm{C}_{15}\right), 13 \delta\left(\mathrm{C} \sim \mathrm{C}_{1}-\mathrm{H}_{14}\right), 8 v\left(\mathrm{C}-\mathrm{O}_{p}\right), 7 v\left(\mathrm{C}_{1+}-\mathrm{C}_{1}-\right), 6 v\left(\mathrm{C}_{4}-\mathrm{C}_{11}\right), \end{aligned}$
1152	1141	1152	$\left.74 \delta_{1}\left(\mathrm{C}_{3} \mathrm{I} 2\right), 8 \mathrm{uc}_{60} \mathrm{C}_{\beta}\right), 6$ ($\left.\mathrm{C}_{11} \mathrm{C}_{11}\right)$
1147	112.3	1146	
1115	110.3	1115	$\begin{aligned} & \left.\left.21 \delta\left(\mathrm{C}-\mathrm{C}_{1,1}-\mathrm{C}\right), 17 \delta\left(\mathrm{C}-\mathrm{O}_{\mathrm{p}}-\mathrm{H}\right), 12 \mathrm{M}\left(\mathrm{C}_{0}-\mathrm{C}_{1}\right), 11 \delta\left(\mathrm{C} \sim \mathrm{C}-\mathrm{H}_{15}\right)-9 \delta\left(\mathrm{C}-\mathrm{C}_{13}-\mathrm{C}\right) \cdot 9 \mathrm{MC}-\mathrm{O}_{\mathrm{p}}\right), 9 \mathrm{uC}_{1.1}-\mathrm{C}_{1}\right) \\ & 68\left(\mathrm{C}-\mathrm{C}-\mathrm{O}_{\pi 1}\right) \end{aligned}$
1014	1065	1014	$\left.4.3 v\left(\mathrm{C}_{6} \sim \mathrm{~N}\right), 2.3 \delta_{r}\left(\mathrm{C}_{\beta} \mathrm{H} 2\right), 21 \mathrm{~V}^{\left(\mathrm{C}_{6}\right.} \mathrm{C}_{\beta}\right)$
961	993	960	
948	946	948	
932	899	932	
876	891	877	
853	865	853	
813	$8+2$	813	$35 v\left(\mathrm{C}_{(0}-\mathrm{C}_{6}\right), 33 \mathrm{v}\left(\mathrm{C}_{6} \mathrm{~N}\right), 208 \mathrm{NLL}^{2}$
796	835	796	
772	786	773	
751	780	750	
724	706	724	
*	691	668	
63.3	631	63.3	
597	585	597	$45 \pi\left(-\mathrm{C}-\mathrm{O}_{m}-\right)^{1} 118\left(\mathrm{C} \sim \mathrm{C}_{1} \sim \mathrm{C}\right), 108\left(\mathrm{C}-\mathrm{C}-\mathrm{O}_{\mathrm{p}}\right)$
570	520	571	
550	471	550	
475	455	475	
460	434	460	

Table 6. Continued

Obs.	Calc."	Calc. ${ }^{3}$	Potential Linergy Distribution (granter tham $5.0 \%)^{\text {c }}$
396	423	398	
390	365	391	```41 \delta(NCC), 13 \deltaf Cp 78(C)```
333	338	334	
312	307	308	$478\left(\mathrm{C}-\mathrm{C}^{(}-\mathrm{O}_{\mathrm{p}}\right), 388 \mathrm{C} \sim\left(\mathrm{C}-\mathrm{O}_{\mathrm{m}}\right)$
267	290	267	
*	252	225	
204	202	203	
157	182	157	
*	128	146	
*	81	74	
*	46	61	$76 \pi\left(-\mathrm{C}_{0}-\mathrm{C}_{p}\right), 9 \delta_{\mu}\left(\mathrm{C}_{p ;} \mathrm{H} 2\right), 5 \pi\left(\mathrm{C}_{p}-\mathrm{C}_{\mu}\right)$

"Calculated freguencies using the exponential scaling method upon Reference 23. "Calculated frequencies in this work. 'Symbols are conesponding to the names listed in lable 3. *Not observed bands.

B3LYP level. The dipole moment shows the highest values for stretched trans conformation. less for the folded gotiche + . and the smallest values for the tightly folded gatuche- from all three different methods as predicted from the structural considerations.

These calculated results could imply that three conformers in neutral species have almost the same energy. and that the populations are evenly distributed for each of threc conformers. The actual structure that can be seen in powder states is dependent strongly on the counter ions. Cl^{-}ions or the molecule HCl mixed with sample. The polar HCl molecules or Cl^{-}ions with moderate charge density nearby could interact with dopamine neulral base molecule to form a stable confomer. possibly the trans conformer because it has the largest dipole moment among three.
Spectral Analysis and Normal Mode Analysis. Because dopamine does not have any symmetry. all the vibrational bands are Raman and infrared active. The structure ol dopamine is labile to the rotation through the $\mathrm{C}_{0}-\mathrm{C}_{\beta}$ bond. so it can have one of three different staggered conformations as shown in Figure 2. A close inspection of calculated spectra of (A) gatuche-. (B) gatchet, and (C) troms conformer in Figure 3 reveals a clear distinction in the region of 2800 $3000 \mathrm{~cm}^{-1}$. the stretching region of two metly lene groups in the ethylamine moiety, i.e.. $-\mathrm{C}_{6} \mathrm{H}_{2}-$ and $-\mathrm{C}_{\beta} \mathrm{H}_{2}-$. They can be designated to four stretching modes. symmetric and antisymmetric for each methylene. However. three carbonhydrogen stretching modes of the catechol ring. the symmetric and anti-symmetric stretching of $-\mathrm{NH}_{2}$ terminal group. and two oxygen-hydrogen stretching modes of the catechol moiety are almost the same in the frequency and the band intensity for three conformers. The rotation through the $\mathrm{C}_{C^{-}}$ C_{β} bond seems to develop quite different force field environments on the methylene stretching modes in the case of the trons from other conformers. This fact may be convincing when one regards the structural aspects of three conformers shown in Figure 2.

We could observe that the stretching frequencies except stretching modes of two methylene groups are far apart from the experimental ones shown in Raman spectnm (B) of Fig-
ure 4. In fact. it needs further scaling even though they were displayed with scaled 0.96 times to frequencies calculated using the raw force constant matrix. We follow the assignments of normal mode analysis for this region because the stretching modes are strongly correlated with the characteristic group frequencies and their potential energy distributions are highly localized over 90% to corresponding stretching modes as shown in Table 6. The O-H stretching Frequencics come out closely located at 3345.1 for $\mathrm{O}-\mathrm{H}_{\mathrm{p}}$ and $3343.1 \mathrm{~cm}^{-1}$ for $\mathrm{O}-\mathrm{H}_{\mathrm{m}}$. respectively. Their diagonal force constants are minimally different. 6.261 and 6.255 mdyne/A for cach. But. the $\mathrm{C}-\mathrm{O}_{\mathrm{n}}$ bond is a little stronger than $\mathrm{C}-\mathrm{O}_{\mathrm{p}}$ bond as can be seen in the force constants 6.1006 and 5.6848 mdyne/A. It has been known that the proton at $\mathrm{O}-\mathrm{H}_{\mathrm{n}}$ is more acidic than at $\mathrm{O}-\mathrm{H}_{\mathrm{p}}$ in the hydrated state of dopamine. This reveals that the acidity of a hydroxyl proton is due to the CO bond characters. The force constants of carbon-carbon bonds in a catcchol ring show that the p-electrons responsible for the double bond character are considerably localized on the $\mathrm{C}_{14}-\mathrm{C}_{17}, \mathrm{C}_{12} \sim \mathrm{C}_{13}$. and $\mathrm{C}_{6}-\mathrm{C}_{11}$ bonds. This result shows the catechol ring is well distorted from the symmetric benzene ring structure. The diagonal force constants for two CH_{2} symmetric stretching modes at α and β carbons are obtained to be 4.8150 and 4.6600 . respectively. This is in good agreement to the the case of ethymethyl amine. ${ }^{211}$ where as 4.5634 .

In $1600 \mathrm{~cm}^{-1}$ region, three are three bands that are Ranan and infrared active in intensity: A band at $1601.7 \mathrm{~cm}^{-1}$ is attributed to highly localized synmetric deformation (scissoring) of terminal NH_{2} which is strongly correlated to $\mathrm{C}-\mathrm{N}$ stretching and NH_{2} synmetric stretching modes. The symmetric deformation of NH_{2} usually occurs in the region 1590 $-1650 \mathrm{~cm}^{-1}$ strong in infrared, but weak in Raman for the primary aliphatic amines. Both Raman and infrared spectra obtained in this experiment as well in the calculated show moderate intensities for this scissoring mode. however. Other two at 1617.1 and $1580.5 \mathrm{~cm}^{-1}$ are assigned to the ring stretching modes. mostly attributed to the ring carboncarbon stretching modes about 80%.

Other deformations of amine NH_{2} are an anti-symmetric

Figure 4. (\wedge) Constructed Raman spectrum of dopamine neutral base using force constant matrix from the relimement procedure and intensities from DIF Frequency calculation: (B) Lxperimental Fourier transform Raman spectrum in powder state obtained at 4 cm^{-1} resolution using cy 1064 mm Nd:YAG laser excitation: (C) Experimental Fourier transionm infrared spectrum in Kbir pelles oblained in an absorbance scale at 4 cm ${ }^{1}$ resolution.
deformation (twisting) and a pseudo-puckering (wagging) mode. This wagging mode is mosily localized into two bands at 932 and $948 \mathrm{~cm}^{-1}$. and strongly correlated to $\mathrm{C}-\mathrm{N}$ stretching and NH_{2} symmetric stretehing modes. The wisting mode is widely distributed to bands at 1350.0. 1322.0. 1260.0. and $961.0 \mathrm{~cm}^{-1}$. weakly correlated to NH_{2} anti-symmetric stretching. $\mathrm{C}_{62} \mathrm{H}_{2}$ rocking. and $\mathrm{C}_{\alpha x} \mathrm{H}_{2}$ lwisting modes.
The stretching modes of two $\mathrm{C}-\mathrm{C}$ bonds in the ethylamine side-chain are correlated to each other as well to $\mathrm{C}-\mathrm{N}$ stretching mode. very widely distributed to at 1495.6. 1350.0. 1287,0. 1206,0. 1152.0.1013.5.948,0. 932,0.813,0. and 724 cm^{-1}. The deformations of a CH_{2} group in the cthylamine side-chain are scissoring. wagging. lwisting and rocking modes. The scissoring and wagging modes of a CH_{2} group at β-carbon are localized to bands at 1470.0 and 1152.0 cm^{-1}. respectively. However. the twisting mode is widely distributed to many bands in the range of 1322.0 to 948.0 cm^{-1}. and the rocking mode is in the range of 932 to 475 cm^{-1}. The scissoring, wagging. and twisting modes at a-carbon are localized to bands at $1449.0,1341.0$ and 1260.0 cm^{-1}. respectively. The rocking mode is distributed in the range of 1350.0 to $724.0 \mathrm{~cm}^{-1}$. The scissoring deformations ${ }^{-1}$ of two CH_{2} groups in the histamine monohydrochloride cation as a microcrystalline powder were assigned to 1455 and $1441 \mathrm{~cm}^{-1}$, respectively: In this case of neutral base form of dopamine. they are observed and assigned to two bands at 1470 and $1+49 \mathrm{~cm}^{-1}$ in localized modes. The wagging and twisting modes are observed and reported in the range of $1100-1400 \mathrm{~cm}^{-1}$. and the rocking modes are in $1100-700$ cm^{-1} for the extended polymethylene chain. $=-$

In-plane deformations (noted in δ) of a catechol ring and an ethylamine moiety; out-of-plane deformations (noted in γ) of six elements attached to the ring carbons, and torsion motions (noted in τ) of a side chain and a catechol ring are well distributed and mixed to generate all the bands in the mid and low frequency regions. The skeletal deformations $\left(\delta(\mathrm{NCC})\right.$ and $\delta(\mathrm{CCC})$) and skeletal torsions $\left(\tau\left(-\mathrm{C}_{12}-\mathrm{N}-\right) . \tau\right.$
$\left(-\mathrm{C}_{\beta}-\mathrm{C}_{\theta}\right)$. and $\left(-\mathrm{C}_{9}-\mathrm{C}_{\beta}-\right)$) of a side chain are distributed in the range of less than $500 \mathrm{~cm}^{-1}$.

Conclusions

Ab initio calculations performed with $6-31 \mathrm{G}^{* *}$ basis set at HF, MP2 and B3LYP show minimal relative stability for a stretched trans, a folded gauchet, and a folded gatcheconfomer of dopamine neutral base in isolated state. The density functional force field with the experimental Raman and infrared spectra enables one to obtain a detailed force field to clarify the structure of dopamine in powder state. The trans conformation is preferred in this case. All the bands are assigned from a refining procedure of the force constant matrix.

References

1. Grol, C. I. The (Themisty of Dopamine: I Iom, \triangle. S., Korf, I., Westerink, B. II. C., Eds.: Academic press: New York, U.S. A. 1979: p 7.
2. (a) Rajan, K. S.: Davis, J. M.: Colbum, R. W. J. Menochem. 1974, 22, 137. (b) Rajan, K. S.: Skriphus, A: Marks, G. Г.. Davis, J. M. Bioinory, Chem. 1976, 6, 93. (c) Park, M. K.: Yoo, H. S.: Kang, Y. K.: Iee, N. S. Bull. Aorean Chem. Soc. 1992,13, 230.
3. Youn, M. Y.: Kim, Y.: Lee, N. S. Bull. Korem Chem. Soc. 1997, /8, 1314.
4. Lee, N. S.: I Isieh, Y. L.: Paisley, R. F.: Morris, M. D. .inal. (hem. 1988, 60, 442.
5. Que, L.: I leistand, R. II. J. Am. (hem. Soc. 1979, 101, 2219.
6. Urhan J. J. Cramer C. T.: Famini. G. R. J. Am. Chem. Soc. 1992, /14. 8226.
7. Nishihira. J. Tachikawa H. J. Theor: Biol. 1997. 185, 157.
8. Cramer. C. T.: Truhlar. D. G. J. Im. Chem. Soc. 1991, 13 , 8305.
9. Alagone. G.: Ghio. C. J. Chem. Phys. 1996, 20t, 239 .
10. Fausto, R.: Ribeiro, M. S.: Pedroso de Lima, J. J. J. Mol. Simet. 1999, A8t, 181.
11. Urban, J. J.: Cronin, C. W.: Roberts, R. R.: Famini, G. R. J. Am Chem. Soc. 1997, 119, 12292.
12. Nagy, P. L.: Nlagona, G.: Ghio. C. I. Am. (hem. Soc. 1999. 12\%, 4804.
13. Collade, J. A: Tunon, I,: Sillat Г.: Ramirer, F. I. J. Phus. (hem. $\ddagger 2000.104,2120$.
14. Ceccarelli. M.: Iutz. M.: Marchi, M. J. Am. (hem. Soc: 2000. $122,3532$.
15. 7anoun, A: I.agant, P.: Vergoten, G. J. Mol. Strtuct. 1999, 510.85.
16. I Ian, W. G.: Jalkanen. K. J.: Elstner. M.: Suhai, S. J. Ihys. Chem. B 1998, 102. 2587.
17. Durig, J. R.: Yu. Z.: Guirgis, G. A.J. Phys. Chem. 12000. 104.741.
18. Lee, S.-H.: Krimm, s. Biopolymer 1998, $48,283$.
19. Wilson, Jr.. E. R.: Decius, J. C: Cross. D.C. Wolecular Tibrations: Dover Publications Inc: New York; UT. S. A. 1955.
20. Batista de Canalho, I. A. F..: Teisera-Dias, J. J. C. . . Raman Spectrosc. 1995, 26,653.
21. Collado, J. A.: Ramiry, F. J. J. Raman Spectrose: 1999. $30,391$.
22. Shimanouchi, I. Pme Appl. Chem. 1963, 7, 131.
23. (a) Lee, I. Y.: Ilahn, O.: Lee, S. I.: Choi, II. S.: Shim, II.:

Mhin, B. T.: Kim, K. S.J. Phws Chem. 1995, 99, 1913. (b) Lee, J. Y.: Hahn, O. Iee, S. T.: Mhin, B. T.: I eee, M. S: Kim, K. S. ibid 1995, 99, 2262.

[^0]: " Δ r: stretching. $\Delta \theta$ in-plane delormation. $\Delta \omega$: out-of-plane deformation. $\Delta \tau$: torsion. "Molecular structural parameters used for calculation of dopaminc froms conformer.

