2-Benzothiazolylhydrazones with Cation Radicals in Nitrile Solvents. Formations of 1,2,4-Triazoles and Triazolo|3,4-b]benzothiazoles

Koon Ha Park, ${ }^{\boldsymbol{*}}$ Kun Jun, ${ }^{\dagger}$ Seung Rim Shin, ${ }^{+}$and Sea Wha Oh^{\dagger}
Department of Chemistry, Chungnam National University, Taejon 305-764. Korea
"Korea Research Institute of Chemical Technology, P.O. Box 107. Taejon 305-606, Korea Received February 16, 2000

Abstract

Arenealdehyde 2-benzothiazolylhydrazone in thianthrene cation radical afforded triazolo[3.4-b]benzothiazoles and 1,2,4-triazoles as major and minor product, respectively. On the contrary the similar reaction in tris($2,4-$ dibromophenyl)aminium hexachloroantimonate gave 1,2,4-triazoles and triazolo[3,4-b]benzothiazoles as major and minor product, respectively.

Introduction

Thianthrene cation radical (Th°) has been extensively investigated and its diverse reactivities with organic substrates are well documented. ${ }^{1.2}$ In reacting with nucleophiles, reaction sites of the Th are sulfur atom and ring carbon depending on the substrates. Reactions of the $\mathrm{Th}^{\text {" }}$ with arylhydrazones of benzaldehyde, ${ }^{3}$ chalcone and benzalacetone ${ }^{4}$ have been reported to make oxidative cycloaddition products to nitrile solvents to give 1,2,4-triazoles and oxidative intramolecular eyclization to pyrazoles, respectively. Recently we reported that the major product was switched when arencaldehyde 2-pyridylhydrazones (1) were reacted with $\mathrm{Th}^{\prime \prime}$ and tris(2,4-dibromophenyl)aminium hexachloroantimonate (TDBP $\wedge^{\prime \prime}$) in nitrile solvent. ${ }^{5}$ That is, s-triazolo[4.3-a]pyridines (2), an intramolecular cyclization product, and 1-(2-pyridyl)-1,2,4triazole (3), an intemolecular cycloaddition product, were obtained as major products in reacting with Th^{\prime} and TDBPA", respectively.

This result prompted us to study further the reactions of cation radicals with 4a-e whose structures are similar with $\mathbf{1}$.

Experimental Section

Nitrile solvents (Aldrich IHPLC grade) were purilied by distillation over phosphorus pentoxide under argon prior to use. Thianthrene (Λ ldrich) was recrystallized iwice from ace1one. Aldehydes, hydrazines, acid chlorides, and inorganic chemicals were used without further purilication. Thianthrene cation radical perchlorate, ${ }^{6}$ thianthrene 5 -oxide, ${ }^{7}$ and 1 ris(2.4dibromophenyl)aminium hexachloroantimonate ${ }^{8}$ were prepared according to the known procedure.

Preparation of Hydrazones

Benzaldehyde 2-benzothiazolylhydrazone (4a). A solu-

$\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{NO}_{2}, \mathrm{Br}$
Scheme 1
tion of benzaldehyde ($1.59 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 2-hydrazinobenzothiazole ($3.00 \mathrm{~g}, 18.2 \mathrm{mmol}$) in ethanol (20 mL) containing acetic acid (5% by wt. to the amount of the aldehyde) was refluxed for 3 h . Upon cooling, the hydrazone precipitated as a pale yellow solid. Recrystallization from ethanol gave pale yellow crystals ($2.40 \mathrm{~g}, 9.49 \mathrm{mmol}, 63.3 \%$) mp $225-226^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} 230-231^{\circ} \mathrm{C}$).

4-Methoxybenzaldehyde 2-benzothiazolylhydrazone (4b). By following the similar procedure as described above for 4a, pale yellow crystals ($3.00 \mathrm{~g}, 10.6 \mathrm{mmol}, 70.7 \%$) were obtained from 4 -methoxybenzaldehyde ($2.04 \mathrm{~g}, 15.0 \mathrm{mmol}$) and 2 hydrazinobenzothiazole ($3.00 \mathrm{~g}, 18.2 \mathrm{mmol}$). mp 193.5-194.5 ${ }^{\circ} \mathrm{C}$ (lit..10 mp 194-195 ${ }^{\circ} \mathrm{C}$).

4-Bromobenzaldehyde 2-benzothiazolylhydrazone (4c). By following the similar procedure as described above for 4a, pale yellow crystals ($5.03 \mathrm{~g} .15 .7 \mathrm{mmol}, 83.6 \%$) were obtained from 4-bromobenzaldehyde ($3.80 \mathrm{~g}, 18.8 \mathrm{mmol}$) and 2-hydrazinobenzothiazole (3.51 g .21 .2 mmol). $\mathrm{mp} 274-276^{\circ} \mathrm{C}$ (lit. ${ }^{9}$ $\mathrm{mp} 280-281^{\circ} \mathrm{C}$).

4-Methylbenzaldehyde 2-benzothiazolylhydrazone (4d). By following the similar procedure as described above for 4a, pale yellow crystals $(3.40 \mathrm{~g}, 12.3 \mathrm{mmol}, 71.1 \%)$ were obtained from 4-methylbenzaldehyde ($2.08 \mathrm{~g}, 17.3 \mathrm{mmol}$) and 2-hydrazinobenzothiazole ($3.00 \mathrm{~g}, 18.2 \mathrm{mmol}$). mp 231-233 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{9}$ $\mathrm{mp} 232-233^{\circ} \mathrm{C}$).

4-Dimethylaminobenzaldehyde 2-benzothiazolylhydrazone (4e). By following the similar procedure as described above for 4a, pale yellow crystals ($4.10 \mathrm{~g} .13 .9 \mathrm{mmol}, 76.5 \%$) were obtained from 4-dimethylaminobenzaldehyde (2.70 g . 18.1 mmol) and 2-hydrazinobenzothiazole ($3.00 \mathrm{~g}, 18.2 \mathrm{mmol}$). $\operatorname{mp} 236-238^{\circ} \mathrm{C}$ (lit. ${ }^{16} \mathrm{mp} 243-244.5^{\circ} \mathrm{C}$).

General reactions of thianthrene cation radical ($\mathbf{T h}^{\prime *}$) with heterocyclic hydrazones in nitrile solvents
llydrazone (0.5 mmol) and $\mathrm{Th}^{12}(1.0 \mathrm{mmol})$ were placed in a septum-capped llask which was evacuated, filled with argon. After nitrile solvent (20 mL) was added to the flask with a syringe, the mixture was stirred for 24 h at room temperature. Water (10 mL) was then added and the reaction mixture was neutralized with dilute sodium bicarbonate solution. The organic products were extracted with methylene chloride ($5 \times 30 \mathrm{~mL}$) and the solvent was dried over anhydrous
sodium sulfate. Filtration and evaporation afforded solid residue which was dissolved in methylene chloride (50 mL) and was used for identification of products by GC and GCMS and for quantitative analysis by GC. Nuthentic samples were used as controls. The products were separated by preparative TLC using methylene chloride/methanol (20/1, v/v) as developing solvents, removed from the plate and extracted with methylene chloride. The separated products were identilied by GC-MS. 'II NMR, melting points, elemental analysis, IIRMS and comparison with authentic samples. Each reaction was carried out twice. The results of products and yields are listed in Table 1.

General reactions of tris(2,4-dibromophenyl)aminium hexachloroantimonate (TDBPA ${ }^{\prime \cdot}$) with heterocyclic hydrazones in nitrile solvents
Ilydrazone (0.5 mmol) and TDBPA ${ }^{1 \cdot}$ (1.0 mmol) were placed in a septum-capped llask, which was evacuated, filled with argon. After nitrile solvent (20 mL) was added to the llask with a syringe, the mixture was stirred for 12 h at room temperature. When water (5 mL) was added to the reaction mixture, TDBPA was precipitated out. The filtrate was then neu- tralized with aqueous sodium carbonate and precipitate of antimony oxide was removed. Work-up of the organic products and analysis procedure were the same as those described in general reactions of $\mathrm{Th}^{1 .}$.

Preparation of authentic compounds

The known triazolobenzothiazoles 5 a-d were prepared according to the previous procedure. ${ }^{11}$ The new compounds 5 E and 6a-e were obtained from the corresponding reactions of 4 with cation radicals, and were used as authentic compounds aller purification. Physical properties of the new compounds 5e and 6a-e are as follows.

3-(4-Dimethylaminophenyl)-s-triazolo [3,4-b|benzothiazole (5e). mp 204-206 ${ }^{\circ} \mathrm{C}$ (ethanol). 'II NMR (300 MHIz , DMSO-d d_{6} : $\delta 3.02(\mathrm{~s}, 6 \mathrm{I}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J-8.8), 7.43-7.52$ (m. 311). 7.60 (d. 2HI. $J-8.8$), 8.03-8.06 (m. 111); GC/MS: (relative intensity) 294 (M, 100), 145 (27.2). Found: C. 65.00 ; II, $4.75 ; \mathrm{N}, 18.91 ; \mathrm{S}, 10.96 \%$. Calculated for $\mathrm{C}_{16} \mathrm{II}_{14} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}$, $65.30 ; \mathrm{II}, 4.76 ; \mathrm{N} .19 .04 ; \mathrm{S}, 10.88 \%$.

1-(2-Benzothiacolyl)-3-phenyl-5-methyl-1,2,4-triazole (6a). mp 191-192 ${ }^{\circ} \mathrm{C}$ (ethanol). 'IJ NMR (300 MH lı, pyridine-d d_{5}): $\delta 2.97$ (s. 3H), 7.36-7.51 (m. 5H), 7.99 (d. 1HI, J-8.1), 8.09 (d. $111, J-8.1$) , 8.41 (dd. $2 \mathrm{II}, J-8.0,1.6$): GC/MS: (relative intensity) 292 (M', 100), 251 (29.2). Found: C. 65.53 ; I1, 3.95; $\mathrm{N}, 18.76 ; \mathrm{S}, 11.08 \%$. Calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}: \mathrm{C}, 65.75 ; \mathrm{II}$, 4.10; N, 19.18; S, 10.96%.

1-(2-Benzothiazolyl)-3-(4-methoxyphenyl)-5-methyl-1,2,4triazole (6b). $\mathrm{mp} 183-185^{\circ} \mathrm{C}$ (ethanol). ${ }^{1} \mathrm{II}$ NMR (300 MHI , DMSO-d d_{6}) $\delta 3.02$ ($\mathrm{s}, 3 \mathrm{H}$), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), 7.02 (d, $2 \mathrm{H}, J-$ 9.0), 7.41 ($\mathrm{td}, \mathrm{Il}[, J-7.6,1.3$), 7.54 (td, 1HI, $J-7.7,1.3$), 7.94-8.03 (m, 2HI), 8.05 (d, 2H, $J-9.0$); GC/MS: (relative intensity) 322 ($\mathrm{M}^{-}, 8.1$), 281 (100), 148 (33.6), 133 (16.7), 103 (10.7), 90 (12.5), 78 (I0.9), 63 (9.4). IJRMS. Found: 322.0887. Calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}: 322.0887$.

1-(2-Benzothiazolyl)-3-(4-bromophenyl)-5-methyl-1,2,4triazole (6e). mp 221-223 ${ }^{\circ} \mathrm{C}$ (cthanol). ${ }^{1}$ II NMR (300 MHIL , DMSO-d d_{6} : $\delta 3.03$ ($\left.\mathrm{s}, 3 \mathrm{I}\right), 7.47(\mathrm{t}, 11 \mathrm{I}, J-7.6), 7.56(\mathrm{td}, 1 \mathrm{II}$,
$J-7.7,1.2) .7 .69(\mathrm{~d}, 21[, J-8.5), 7.98(\mathrm{~d}, 111, J-7.6), 8.06$ (m, 311); GC/MS: (relative intensity) $372(\mathrm{M}+2,100), 370$ (M , 98.3), 331 (54.9), 329 (67.7), 148 (31.9), 122 (12.1). 102 (16.4), 78 (10.7). l IRMS. Found: 369.9923. Calculated for $\mathrm{C}_{16} \mathrm{I}_{11} \mathrm{~N}_{4} \mathrm{Br}: 369.9920$.

1-(2-Benzothiazolyl)-3-(4-methylphenyl)-5-methyl-1,2,4triazole (6d). $\mathrm{mp} 191-193^{\circ} \mathrm{C}$ (ethanol). 'H NMR (300 MIL , DMSO-d d_{6} : $\delta 2.40(\mathrm{~s}, 311), 3.00(\mathrm{~s}, 3 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J-8.1)$, $7.47(\mathrm{~d} .111 . J-7.6), 7.56(\mathrm{td}, 11 \mathrm{I}, J-7.7 .1 .3), 7.97-8.00(\mathrm{~m}$, 3 H), 8.10 (d. $111, J-8.0$); GC/MS: (relative intensity) 306 (M, 100), 265 (60.1). I IRMS. Found: 306.0965. Calculated for $\mathrm{C}_{17} \mathrm{l}_{1+} \mathrm{N}_{4} \mathrm{~S}: 306.0963$.

1-(2-Benzothiazoly)-3-phenyl-5-vinyl-1,2,4-triazole (6e). $\mathrm{mp} 179-183^{\circ} \mathrm{C}$ (ethanol). 'II NMR (300 MHI , chloroformd): $\delta 5.91$ (d. 1H, $J-11.0), 6.75$ (d. $1 \mathrm{H} ., J-17.3$), 7.37-7.52 (m, 5H), 7.87 (d. 111, $J-7.7$), 7.96-8.05 (m. 211), 8.21-8.22 (m, 211); GC/MS: (relative intensity) 304 (M, 68.3), 303 (M1, 100). 11RMS. Found: 304.0798 . Calculated for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~S}$: 304.0797.

Results and Discussions

Reactions of 4a-e with Th^{*} and TDBPA proceeded to give oxidative intramolecular eyclization and cycloaddition products as shown in Scheme 2 and the results are listed in Table 1. As can be seen in Table 1, reactions of 4a, \mathbf{c}, \mathbf{d} with Th' ${ }^{\prime}$ in acetonitrile gave products 5 and 6 in a ratio of $2: 1$. On the other hand, each of 4 b and 4 e gave 5 as a sole product. The other products observed in our reactions were Th as a redox partner product and ThO. Formation of ThO is not related to the main reaction but stems from the hydrolysis of Th' ${ }^{*}$ due to either adventitious water or water added in the work-up procedure.

To make it elear whether the acid-catalyzed reaction might be undergoing in our reaction conditions or not, 4 a was treated with aqueous perchloric acid in a $1: 2$ molar ratio
a: $\mathrm{X}=\mathrm{H}, \mathrm{b}: \mathrm{X}=\mathrm{OMe}, \mathrm{c}: \mathrm{X}=\mathrm{Br}$, d: $\mathrm{X}=\mathrm{Me}, \mathrm{e}: \mathrm{X}=\mathrm{Me}_{2} \mathrm{~N}$

$\mathrm{R}=\mathrm{Me} ; \mathrm{a}: \mathrm{X}=\mathrm{H}, \mathrm{b}: \mathrm{X}=\mathrm{OMe}$, c: $\mathrm{X}=\mathrm{Br}, \mathrm{d}: \mathrm{X}=\mathrm{Me}$
$\mathrm{R}=$ vinyl; e: $\mathrm{X}=\mathrm{H}$

Scheme 2

Table 1. Quantitative analysis of products in the reactions of 4 with cation radicals in nitrile solvents

4(X)	Solvent (RC, N) R	Cation Radical ${ }^{\text {d }}$	Products. Yield $\%$ \%					
			'Th'	Th\%	[1)I3PA	5		ArCIO
4a(H)	Me	A	98.9	1.0		49.2	25.0	
$4 \mathrm{~b}(\mathrm{McO})$	Me	A	93.3	1.0		98.2		
$4 \mathrm{~b}(\mathrm{McO})$	Me	A	93.3	1.0		98.2		
$4 \mathrm{~b}(\mathrm{McO})$	Me	A	93.3	1.0		98.2		
$4 \mathrm{c}(\mathrm{Br})$	Me	A	96.4	2.7		59.2	24.6	
4d(M0)	Me	A	97.6	1.2		46.8	28.6	
4e(Me2N)	Me	A	97.4	2.4		51.6		
4a(H)	Me	B			87.9	6.2	63.6	2.0
4a(H)	Vinyl	B			90.3	13.0	26.4	3.0
4b(M0O)	Me	B			89.0	55.4	28.2	2.0
4 c (Br)	Me	B			92.7	4.2		2.0
$4 \mathrm{~d}(\mathrm{Mc})$	Me	B			98.7	4.0	65.4	1.0

" $\mathrm{A}=\mathrm{Th}^{-}{ }^{-} \mathrm{ClO}_{4}: \mathrm{B}=\mathrm{TDBPA}^{-} \mathrm{SbCl} \mathrm{l}_{6}$. ${ }^{\text {D }}$ Determined by CC . "Based on the amount of Th^{++}. "Characterized by 'II NMR. GCMS. IIRMS. and mp. and by conparing those of aullertic samples. "Characterized by 'H NMR. GC/MS. HR.MS. and/or elemental analysis.
($\mathbf{4 a}: 70 \% \mathrm{IIClO}_{4}$) in acetonitrile. And we found out that no reaction proceeded under these conditions. This obscrvation indicated that the products formed in reactions of $\mathrm{Th}^{\prime *}$ were not derived from the liberated acid during the reaction.
The results obtained from reactions of 4a-d with TDBPA ${ }^{\prime}$

Scheme 3
are collected in Table 1.
Those reactions proceeded rapidly and gave 6 as a major product together with 5 and aldehyde in most cases. Oxidation with TDBPA' led to the formation of TDBPA as a redox partner product. To clarify the acid-catalyzed reaction by SbCl_{5}, the reaction was cartied out in a $1: 2$ molar ratio (4a : SbCl_{5}) in acetonitrile, from which the products were 5 a (2.0%), benzaldehyde (9.4%), unreacted 4 a (11.8%) and some unidentified products (76.8%).

Therefore, it was not obvious whether 5 was fomed by cation radical induced reaction or acid catalyzed reaction. To distinguish between nucleophilic and pericyelic routes to 5 and 6 , the reaction of TDBPA ${ }^{*}$ with 4a was carried out in acrylonitrile. Product 6e (26.4%) was obtained along with $\mathbf{5 a}(13.0 \%)$ and benzaldehyde (3.0%). As reported previously, ${ }^{12.13}$ pericyelic eycloaddtion by nitrilimine intermediate with acrylonitrile occurred at the vinyl rather than at the cyano group. Accordingly, it is clear that cation radical reactions do not go through the nitrilimine intermediate. In addition to this, when the reaction of with 4a in the presence of triethylamine was carried out in acrylonitrile, 5-cyanopyrazoline was not detected. The formation of 5-vinyl-1,2,4-triazole rather than 5 -cyanopyrazoline provided an evidence that a cation radical induced cycloaddition does not go through a nitriliminium ion intermediate either. From these results, two plausible pathways for the formation of 5 and 6 would be considered as shown in Scheme 3 and Scheme 4.

In the reaction of 4 with Th^{*}. the fomation of product 5 and 6 is suggested in Scheme 3.

The intermediate 7 which was formed by one electron oxidation of $\mathbf{4}$ gave both 5 by an intramolecular cyclization and 6 by an intermolecular cyclization with solvent nitrile.
4a-e
TDBPA $^{+}$

$-\mathrm{H}^{+}$
12

- H^{+}
6

Scheme 4

As can be seen in Table 1, formation of $\mathbf{5}$ is favored by the substrate having electron donating group such as methoxy ($\mathbf{4 b}$) and dimethylamino ($\mathbf{4 e}$) which would stabilize the radical cation 7

In contrast with $\mathrm{Th}^{\prime \prime}$. the reaction of TDBPA ${ }^{\prime \prime}$ gave 6 as a major product along with 5 and aldehyde as a minor product excepl $\mathbf{4 b}$.

As shown in Scheme 4 a dication 13 would be casily formed from the intermediate 7 by more stronger oxidant TDBPA than Th° ($\mathrm{Th}^{*}: 1.3 \mathrm{~V}$ ve SCE. ${ }^{1}$ TDBPA ${ }^{\circ}: 1.5 \mathrm{~V}$ vs SCE ${ }^{14}$). which react with nitrile solvent and the successive deprotonation to yield 6.
Acknowledgment. We thank the Ministry of Education through the Basic Science Rescarch Institute Program (BSRI-98-3433) for financial assistance.

References

1. Shine, H. I. In The Chemistry of the Sulfonitum (frotus: Stirling, C. T. M., Patai, S., Feds: Wiley: New York, 1981: Part 2. pp 523-570.
2. Kovelesky, A. C.. Shine, H. I. J. Ofy Chem. 1988, $53,1973$.
3. Iloque, A. K. M. M.: Kovelesky, A. C.: Lee, W. K.: shine, 11. J. Tetrahedron Lett. 1985, 26, 5655.
4. Chion, S.: Hoque, A. K. M. M. Shine, II. J. J. Ory. Chem. 1990, 55, 3227.
5. Park. K. H.: Jun, K.: Shin, S. R.: Oh. S. W. Bull. Korean (hem. Soc. 1997, 18, 604
6. Shine, H. T. Hoque, A. K. M. M. J. Org. (hem. 1988, 53 , 4349
7. Gilman. H.: Swayampati, D. R. J. Am. (hem. Soc. 1955, 77, 3387 .
8. Schmidt, W.: Steclkan, E. Chem. Ber: 1980, M3, 577.
9. Butler, R. N.: O'Sullivan, l': Scott, F. L. J. (hem. Soc: (C) 1971, 2265.
10. Katz, L. J. Am. Chem. Soc. 1951, 73, 4007.
11. Butler, R. N.: O'Sullivan, 1?: Scott, F. L. J. Chem. Soc: PerKin I 1972, 1519.
12. Huisgen, R.: Seidel, M.: Wallbillich, G.: Knuptier H. Tetrahedron 1962, 17, 3.
13. Huisgen, R: Grashey, R.: Seidel M.: Wallbillich, G: : Knupler, H.: Schmidt, R. Liehigs A $n m$. (hem. 1962, 653, 105.
14. Hammerich, O.: Parker, V. D. Ache Phus. Oig. (hem. 1962, $20,55$.
