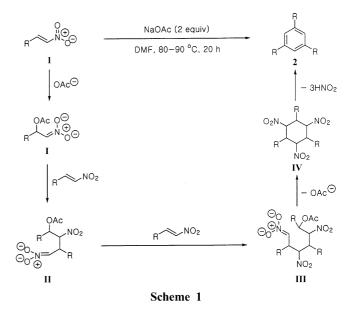
Improved Synthesis of 1,3,5-Triarylbenzenes from α,β -Unsaturated Nitro Compounds

Tae Yi Kim, Hyoung Shik Kim, Ka Young Lee, and Jae Nyoung Kim*

Department of Chemistry, Chonnam National University, Kwangju 500-757, Korea Received February 21, 2000


Recently we have reported that *N*,*N*-dimethylformamide dimethylacetal (DMF-DMA) could be used as a useful initiator for the cyclic trimerization of α , β -unsaturated nitro compounds to form 1,3,5-trisubstituted benzene derivatives.¹ In the reaction, trace amounts of methoxide ion in DMF-DMA might trigger the whole reaction.^{1,2} However, the yields were not high enough to be practical in the synthetic point of view.³

Development of a new method for the preparation of 1,3,5-trisubstituted benzenes is important in view of their utility in the fields of electrode and electroluminescent devices⁴ or in the chemistry of conducting polymers.⁵ Most frequently used methods involve transition metal catalyzed cyclic trimerization of acetylene derivatives⁶ and acid catalyzed trimerization of acetophenones.⁷ In these contexts, we thought that the synthesis of 1,3,5-triarylbenzenes from α,β -unsaturated nitro compounds is a new entity for the preparation of these valuable compounds.

Thus, in order to find more efficient catalyst for the cyclic trimerization of α,β -unsaturated nitro compounds, we examined various candidates as a catalyst. These include sodium hydroxide, sodium methoxide, sodium acetate, potassium

Table	1.	Cyclic	trimeri	ization	of 1	a in	various	reaction	conditions -
THORE		Cycne	ti miti te ti	Lation			(anous	reaction	conditions

entry	solvent	initiator	reaction conditions	yield (%)
1	DMF	DMF-DMA (2 equiv)	80-90 °C, 20 h	34 (ref. 1)
2	DMF	NaOH (1 equiv)	80-90 °C, 20 h	low yield
3	DMF	MeONa (2 equiv)	80-90 °C, 20 h	low yield
4	MeOH	MeONa (2 equiv)	reflux, 40 h	no reaction
5	DMF	Me ₂ NCH(OEt) ₂	80-90 °C, 20 h	10
		(2 equiv)		
6	DMF	NaOAc (2 equiv)	80-90 °C, 20 h	40
7	DMF	KSAc (2 equiv)	80-90 °C, 20 h	low yield
8	DMF	KCN (2 equiv)	80-90 °C, 20 h	25
9	DMF	DABCO (2 equiv)	80-90 °C, 20 h	low yield
10	DMF	KI (4 equiv)	80-90 °C, 40 h	no reaction
11	DMF	Ph ₃ P (1 equiv)	80-90 °C, 20 h	low yield
12	DMF	KF (2 equiv)	80-90 °C, 20 h	low yield
13	DMF	CsF (2 equiv)	80-90 °C, 20 h	36
14	DMSO	NaOAc (2 equiv)	80-90 °C, 24 h	41
15	NMP	NaOAc (2 equiv)	80-90 °C, 20 h	40
16	HMPA	NaOAc (2 equiv)	80-90 °C, 20 h	39
17	CH ₃ CN	NaOAc (2 equiv)	reflux, 20 h	low yield
18	DMSO	KSAc (2 equiv)	80-90 °C, 20 h	low yield
19	DMF	NaOAc (2 equiv)	sonication, 60 °C, 20 h	29

thioacetate, potassium cyanide, potassium iodide, potassium fluoride, and cesium fluoride *etc.* (see Table 1). We tried the reaction in DMF, DMSO, 1-methyl-2-pyrrolidinone (NMP), HMPA, methanol, and acetonitrile at rt -90 °C. Some representative trials were summarized in Table 1 by using β -nitrostyrene (1a) as a model substrate in various reaction conditions.

As shown in Table 1, we could obtain 1,3,5-triphenylbenzene (**2a**) in increased yield when we use sodium acetate as a catalyst in polar, aprotic solvent such as DMF, DMSO, NMP, and HMPA (entries 6, 14-16). Some variations of the reaction conditions such as reaction temperature, amounts of NaOAc, or reaction time did not improve the yield of **2a** significantly. Thus considering yields, amounts of side products, and ease of separation, we decide to use NaOAc in DMF as the best conditions in our trials (entry 6 in Table 1, Scheme 1).

 β -Nitrostyrene derivatives **1a-d** or heterocyclic analogues **1e-g** afforded the corresponding trimerized compounds **2a-g** in 34-66% isolated yields. The results were summarized in Table 2. However, alkyl derivatives (eg, 1-nitro-3-methyl-1butene or 1-nitro-1-cyclohexene) or β -substituted nitro olefins (eg, 1-nitro-1-methyl-2-phenylethene) did not give the desired products. The failure might be due to the steric hindrance of the intermediates, **H** or **HI**, generated by the consecutive Michael addition reaction (*vide infra*).

The mechanism for the formation of 2 can be proposed as shown in Scheme 1. Addition of acetate ion to β -nitrostyrene

522 Bull. Korean Chem. Soc. 2000, Vol. 21, No. 5

entry"	β -nitro styrene (1)	products (2, % yield)'ef
1	NO ₂ la	2a (40%) ^{1.7a}
2	NO ₂ 1b	2b (37%) ^{1.7a}
3	CI NO ₂ Ic	2c (34%) ^{1.7a}
4	MeO NO ₂ 1d	2d (35%) ^{7b}
5	NO ₂ le	$2e (40\%)^{1}$
6	$\sum_{S}^{NO_2}$ If	$\int_{S}^{1} \int_{S} 2f (66\%)^{1.7c}$
7	∫S ^{NO2} lg	$\sum_{S}^{S} 2g (60\%)^{7c}$

Table 2. Synthesis of 1,3,5-triarylbenzene derivatives

"All reactions were run on a 2 mmol scale.

gave a new nucleophilic intermediate **I**, which adds to β nitrostyrene to give **II**. Subsequent addition, same reaction once again, cyclization, and the final elimination of nitrous acid afford the desired product.^{1.77} Lewis basic nature of DMF must facilitate the elimination of nitrous acid in the last step. In this report we developed an improved practical preparation method of 1,3,5-triarylbenzenes from the easily available α,β -unsaturated nitro compounds with the aid of sodium acetate in DMF.

Acknowledgments. We wish to thank the Chonnam National University Research Foundation for financial support of this work (1999).

References

- Kim, T. Y.; Kim, H. S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 1999, 20, 1255.
- 2. (a) Paquette, L. A. Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons: 1995; vol 3, pp 2075-2078.
 (b) Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999, 40, 4363.
- Reported yields of 2 in reference 1 by using DMF-DMA: 2a (34%), 2b (20%), 2c (25%), 2e (40%), 2f (37%).
- 4. (a) Lindeman, S. V.; Struchkov, Yu. T.; Michailov, V. N.; Rusanov, A. L. *Izv. Akad. Nauk. Ser. Khim.* 1994, 1986; *Chem. Abstr.* 1995, *123*, 32717p. (b) Aslam, M.; Aguilar, D. A. *PCT Int. Appl. WO* 93 14,065; *Chem. Abstr.* 1993, *119*, 270793x.
- (a) Viallat, A.; Pepin-Donat, B. *Macromolecules* 1997, 30, 4679. (b) Rebourt, E.; Pepin-Donat, B.; Dinh, E. *Polymer* 1995, 36, 399. (c) Pepin-Donat, B.; de Geyer, A.; Viallat, A. *Polymer* 1998, 39, 6673. (d) Pelter, A.; Jenkins, I.; Jones, D. E. *Tetrahedron* 1997, 53, 10357.
- For transition metal catalyzed [2+2-2] cycloaddition reaction of phenyl acetylene derivatives, see (a) Meriwether, L. S.; Colthup, E. C.; Kennerly, G. W.; Reusch, R. N. J. Org. Chem. 1961, 26, 5155. (b) Jhingan, A. K.; Maier, W. F. J. Org. Chem. 1987, 52, 1161.
- For acid catalyzed cyclic trimerization of acetophenones, see (a) Iranpoor, N.; Zeynizaded, B. Synlett 1998, 1079.
 (b) Cheng, K.-J.; Ding, Z.-B.; Wu, S.-H. Synth. Commun. 1997, 27, 11. (c) Kotha, S.; Chakraborty, K.; Brahmachary, E. Synlett 1999, 1621. (d) Plater, M. J. J. Chem. Soc. Perkin Trans. 1 1997, 2897. (e) Elmorsy, S. S.; Khalil, A. G. M.; Girges, M. M.; Salama, T. A. J. Chem. Res. 1997 (S) 232. (f) Tintiller, P.; Dupas, G.; Bourguignon, J.; Queguiner, G. Tetrahedron Lett. 1986, 27, 2357.