DOI QR코드

DOI QR Code

Voltammetric Studies of Guanine and Its Derivatives by (TEX)$Ru(bpy)^{2+/3+}$(/TEX) Mediator on Indium Tin Oxide Electrode


Abstract

Oxidizing metal complex mediates the electrochemical oxidation of guanine nucleotides. This catalysis results in an enhancement in cyclic voltammograms that yield the rate constant for the oxidation of guanine by the metal complex via digital simulation. The rate constant of oxidation of guanine by Ru(bpy)3(3+) is 6.4 x 10(5)M(-1)s(-l). The rate constant and the enhanced current depend on the number of phosphate groups on the sugar of nucleotidc. Also the modified guanine bases show different oxidation rate constants following the trend guanine-5'- monophosphatc (GMP) > 8-bromo-guanine-5'-monophosphate (8-Br-GMP) > xanthosine -5'-monophosphate (XMP) > inosinc-5'-monophosphate (IMP). The guanine bases derivatized differently are all distinguishable from one another, providing a basis for studying electrochemistry of DNA and RNA and developing electrochemical biosensors.

Keywords

References

  1. Cancer Res. v.52 Strauss, B. S.
  2. Adv. Inorg. Chem. v.43 Thorp, H. H.
  3. J. Am. Chem. Soc. v.119 Steenken, S.;Jovan, S. V.
  4. Topics in Bioelectrochemistry and Vioenergetics Palecek, E.;Milazzo, G.(ed.)
  5. J. Electroanal. Chem. v.310 Vetteri, V.;de Levie, R.
  6. Anal. Chim. Acta v.174 Palecek, E.
  7. Anal. Chim. Acta v.211 Bouzid, B.;MacDonald, A. M. G.
  8. J. Am. Chem. Soc. v.117 Jonhson, D. H.;Glaspow, K. C.;Thorp, H. H.
  9. Bioconjugate Chem. v.8 Napier, M. E.;Loomis, C. R.;Sistare, M. F.;Kim, J.;Thorp, H. H.
  10. Met. Ions. Biol. Syst. v.33 Jonhson, D. H.;Welch, T. W.;Thorp, H. H.
  11. J. Phys. Chem. v.100 Jonhson, D. H.;Thorp, H. H.
  12. J. Am. Chem. Soc. v.119 Steenken, S.;Javanovic, S. V.
  13. Biophys. Chem. v.9 Brabec, V.
  14. Chem. Rev. v.89 Steenken, S.
  15. Anal. Chem. v.70 Steel, A. B.;Herne, T. M.;Tarlov, M. J.
  16. Langmuir v.15 Patolsky, F.;Katz, E.;Bardea, A.;Willner, U.

Cited by

  1. Interactions of polypyridyl cobalt complexes with DNA studied by rotating electrode methods vol.35, pp.3, 2005, https://doi.org/10.1007/s10800-004-6309-2
  2. DNA-promoted electrochemical assembly of [Ru(bpy)2IP]3+/2+ at an ITO electrode vol.51, pp.10, 2006, https://doi.org/10.1016/j.electacta.2005.06.031
  3. Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA vol.600, pp.2, 2000, https://doi.org/10.1016/j.jelechem.2006.10.016
  4. DNA-enhanced assembly of [Ru(bpy)2ITATP]3+/2+ on an ITO electrode vol.52, pp.15, 2000, https://doi.org/10.1016/j.electacta.2007.01.074
  5. Disproportionation of pentaammineruthenium(III)-nucleoside complexes leads to two-electron oxidation of nucleosides without involving oxygen molecules vol.17, pp.8, 2012, https://doi.org/10.1007/s00775-012-0942-8