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Radical Cyclization Studies of Alkenylboronates
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Alkenylboronates were shown to serve as effective inter- 
and intramolecular radical acceptors.1 More recently, results 
on the boron-tethered radical cyclization reactions were 
reported.2 In these reactions, the C-B bond oxidation eventu­
ally yields alcoholic products, the stereoselectivity being 
determined at the radical addition step.

In our continuing search fbr stereoselective radical cycli­
zation reactions, we had occasion to examine further stereo­
chemical characteristics of alkenylboronate radical cycliza­
tion reactions. First, the alkenylboronate 3 was prepared 
from 6-bromo-3 -benzyloxy-1 -hexyne (1) via Rh-catalyzed 
hydroboration with pinacolborane.3 Radical cyclization of 3 
under the standard high dilution conditions led to the 
formation of the product mixture 5, which yielded the benzyl 
ethers 7 and 9 of trans- and cz\-2-(hydroxymethyl)cyclo- 
pentan-l-ol (17 and 19) in a 3 : 1 ratio upon oxidation with 
m-chloroperoxybenzoic acid (Scheme 1). Likewise, the 
alkenylboronate 4, which was prepared from 7-bromo-3- 
benzyloxy-1 -heptyne (2), was converted into the cyclo­
hexanol products 6, which eventually yielded the benzyl 
ethers 8 and 10 of trans- and cz\-2-(hydroxymethyl)cyclo- 
hexan-l-ol (18 and 20) in a 3.5 : 1 ratio. It may be concluded 
that 5-exo and 6-exo radical cyclization reactions of the 
alkenylboronate substrates possessing allylic alkoxy sub­
stituents follow the general rule fbr 4-substituted 5-hexenyl 
radicals favoring production of the trans isomers.4

An alternative way of preparing compounds like 17/19 
and 18/20 would be using (^oxoalkenylboronate substrates; 
we were intrigued by the possibility of stereocontrol via 
intramolecular association involving the stannyloxyalkyl 
radical moiety, produced upon stannyl radical addition to 
the aldehydo group, and the resident boronate functionality. 
The substrate 6-oxohexenylboronate 13 was prepared from 
5-hexyn-l-ol (11) via Rh-catalyzed hydroboration with 
pinacolborane and subsequent PCC oxidation. Reaction of
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13 with tributylstannane proceeded smoothly producing a 
mixture of products 15. Oxidation of the product mixture 
15 led to the efficient formation of trans- and cis-2- 
(hydroxymethyl)cyclopentan-1 -ol (17 and 19)5 in a 1.5 : 1 
ratio (Scheme 2). Starting from 6-heptyn-l-ol (12), the 7- 
oxoheptenylboronate 14 was prepared analogously. When 
the radical cyclization product mixture 16 was subjected to 
the mCPBA oxidation, trans- and cz\-2-(hydroxyme- 
thyl)cyclohexan-1 -ol (18 and 20)6 were obtained in a 1.7 : 1 
ratio.

In the present studies, modest levels of stereocontrol were 
ascertained in the radical cyclization reactions of ooxo- 
alkenylboronates, negating the possible role of the boronate 
moiety in inducing high stereocontrol via intramolecular 
association. However, alkenylboronate radical cyclization 
strategy will probably serve as a viable alternative in the 
synthesis of complex 2-(hydroxymethyl)cycloalkan-1 -ols.
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