Studies on Long-wavelength Infrared Detector using Multiple Stacked InAs Quantum Dot Layers

다층 InAs 양자점을 이용한 장파장 적외선 수광소자에 관한 연구

  • Kim, Jong-Wook (Center for Electronic Materials and Components, Department of Electronic Engineering, Hanyang University) ;
  • Oh, Jae-Eung (Center for Electronic Materials and Components, Department of Electronic Engineering, Hanyang University) ;
  • Hong, Seong-Chul (Department of Electrical and Electronic Engineering, Korea Advanced Institute of Science and Technology)
  • 김종욱 (漢陽大學校 電子工學科 電子材料 및 部品 硏究센터) ;
  • 오재응 (漢陽大學校 電子工學科 電子材料 및 部品 硏究센터) ;
  • 홍성철 (韓國科學技術院, 電氣電子工學部)
  • Published : 2000.08.01

Abstract

Long-wavelength infrared (LWIR) detectors made of self-assembled quantum dots embedded in the channel region of high electron mobility transistor (HEMT) is demonstrated. Above 180 K, the detector shows low dark currents due to strong confinement effect of electrons in InAs quantum dots and exhibits the broad spectral response ranging from 7 mm to 11 mm. The peak detectivity ($D^*$) of $1.93{\times}10^{10}cmHz^{1/2}/W$ is obtained at 9.4 mm. The photocurrent characteristics as a function of applied bias are similar to that of normal FETs, while the photocurrent decreases as the applied electric field exceeds $2{\times}10^3V/cm$ because of the increased dark current.

분자선결정성장법을 이용하여 자기구성 양자점들을 high electron mobility transistor (HEMT)의 체널 영역에 삽입하여, 양자점내의 inter-subband transition을 이용한 전파장 적외선 수광소자를 제작하였다. 제작된 소자는 180 K 이상의 온도에서 InAs 양자점의 전자에 대한 강한 구속력으로 인해 낮은 암전류 특성을 보이며 7${\mu}m$에서 11${\mu}m$까지의 넓은 수광영역을 나타내었다. 9.4${\mu}m$에서 peak 광전류가 검출되었으며 이때의 검출율은 $1.93{\times}10^{10}cmHz^{1/2}/W$ 였다. 장파장 적외선 검출에 따른 광전류는 가해진 전압에 대하여 전계효과트랜지스터와 같은 전류-전압 특성을 가지며, 인가된 전압이 증가함에 따라 증가된 암전류에 의하여 광전류가 감소하는 특성을 보여주고 있다.

Keywords

References

  1. J. M. Moison, F. Houzay, F. Barthe, L, Leprince, E. Andre, and O. Vatel, Appl. Phys. Lett. 64 196 (1994) https://doi.org/10.1063/1.111502
  2. D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11 687 (1994)
  3. M. K. Zundel, N. Y. Jin-Phillipp. K. Eberl, T. Riedl, E. Fehrenbacher, and A. Hangeiter, Appl. Phys. Lett. 73 1785 (1998) https://doi.org/10.1063/1.122281
  4. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, And D. G. Deppe, Appl. Phys. Lett. 73 2564 (1998) https://doi.org/10.1063/1.122534
  5. Chae-Deok Lee, Hwack Joo Lee, Sam Kyu Noh, Chanro Park, Chan Cyung Park, Seong-Ju Park, and Kyu-Seok Lee, J. Korea Phys. Soc. 33 S262 (1998)
  6. S. M. Park, S. M. Yoo and S. K. Koh, J. Korean Phys. Soc. 28 S596 (1995)
  7. B. F. Levine, J. Appl. Phys. 74 R1 (1993) https://doi.org/10.1063/1.354252
  8. Sarath D. Gunapala, John K. Liu, Jin S. Park, Mani Sundaram, Craig A. Shott, Ted Hoelter, True-Lon Lin, S. T. Massie, Paul D. Maker, Richard E. Muller, and Gabby Sarusi, IEEE Trans. Electron Devices, 44 51 (1997) https://doi.org/10.1109/16.554791
  9. J. Philips, K. Kamath, and P. Bhattacharya, Appl, Phys. Lett. 72 2020 (1998) https://doi.org/10.1063/1.121252
  10. S. W. Lee, K. Hirakawa, and Y. Shimada, Appl. Phys. Lett. 75 1428 (1999) https://doi.org/10.1063/1.124715