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Partitioning and Constraints Generation for the Timing
Consistency in the Hierarchical Design Method

Sang-Yong Han'

ABSTRACT

The advancements in technology which have lead to higher and higher levels of integration have required
advancements in the methods used in designing VLSI chip. A key to enable a complicated chip design is the use of
hierarchy in the design process. Hierarchy organizes the function of a large number of transistors into a particular,
easy- to-manage function. For these reasons, hierarchy has been used in the design process of digital functions for
many years. However, there exists differences in a design analysis phase, especially in timing analysis, due to multiple
views for the same design. In timing analysis of the hierarchical design, every path is analyzed within partitioned
modules independently and the global timing analysis is applied to the whole design considering each module as a single
timing component. Therefore, timing results of the hierarchical design could not be same as those of non-hierarchical
flat design. In this paper, we formulate the timing problem in the hierarchical design and analyze the possible source of
timing differences. We define a new terminology of “consistent result” between different views for the same design. We
also propose a new partitioning algorithm o oblain the consistent results. This algorithm helps to enhance the design
cycle time.
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1. Introduction

The early design methodology was flat in both the
svnthesis and physical design environments. Even
though, the logic written in VHDL or Verilog was done
on a partition basis, the entire design was flattened into
a single piece before svnthesis was performed. The
single file was then taken to physical design and placed
and wired as a single entity. This process was very
flexible in supporting design changes and easy for a
timing analysis. But, a continuous trend in the design
of VLSI chip is the increase of circuit size accompanied
by decrease of feature sizes and we are now facing the
design of up to ten million transistors. In the new design
cenvironments, abstraction and hierarchy is a key to
manage complex technical and organizational problems.

The intuitive notion of hierarchy is simple. One
decomposes a large problem into a number of smaller
parts. While each of the parts can be expected to exhibit
only limited complexity, it is the expectation that the
integration of the parts will not lead to a significant
increase. Such hierarchical decomposition techniques
have long been in use for IC design supported by CAD
tools. Many of these were devised for obtaining a
reduction of the amount of the design data. However,
hierarchy affects the number of interactions between
components to be taken into account as well as the
number of configurations to be considered during design.
Interface and consistency in the hierarchy design is very
serious and critical in the timing analysis [8].

There are two different kinds of nets in the hie-
rarchical design. Some nets belong to the same partition
and others go to more than one partition. We refer to
these as local and global nets respectively. Since the
delays of global nets are not known during timing
analysis of individual partitioned module, they could be
the source of the timing differences between two design
views [6]. We formally analyze the timing difference
problem and formulate the concept of “consistent result”
and observability. In addressing the consistency pro-
blem, we also propose the partitioning algorithm to

guarantee the consistency of timing results between

different views of design.

Partitioning and placement in the physical design
phase has mostly been concerned about obtaining a
wirable layout rather than timing accuracy and per-
formance. Recently several approaches have been de-
veloped which optimize the timing and performance but
timing consistency [9). We now introduce a new
approach whereby the partitioning process is being
governed by the ability to guarantee the timing
consistency between the flat design and hierarchically
partitioned design.

Section 2 will introduce hierarchy and the basic ideas
behind it. Hierarchy as it is presently exploited in VLSI
design will be the subject of discussion, leading to
problems as they can be observed in practice. In this
section we also discuss the nature and origin of timing
constraints and its relation to VLSI design.

In section 3, we formulate the timing problems in the
hierarchical design and define the concept of “consistent
result” and “critical observability”. Nets are also classi-
fied based on their position in timing analysis. Section
4 will investigate the partitioning problem to satisfy the
timing requirements to guarantee the consistent resuit.
Characteristics of suppressed paths are examined and
timing constraints are also discussed. Partiti_oning
algorithm is given and its complexity is discussed.
Finally, section 5 will discuss the experimental results
of the proposed algorithm.

2. Hierarchical timing analysis model

2.1 Flat design vs. hierarchical design

The basic semi-custom approach used by the industry
is a hierarchical design methodology. In a hierarchical
methodology the VLSI design is split into a tree-like
hierarchical structure, each node of which is a sub-
design to be‘built. Each design on the node of the tree
becomes one of the building blocks for the parent node
of the design (see (Fig. 1)). In this way, complex VLSI
design may be built up from less complex underlying
objects.

There are two major advantages of a hierarchical
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(Fig. 1) hierarchical structure

design over flat design. The first one is easy to express
a particular style of a design and the second is to reduce
the problem size. A common choice of child-child
hierarchical boundaries in VLSI design is terrain. A
terrain is a region of a chip that expresses a particular
style of physical design. Examples of terrains are
random logic, arrays, data path, etc. One of the difficult
problems with a flat design is generating placement and
wiring algorithms that operate well on different styles
of logic. For instance, random logic region and data flow
regions require a completely different style of wiring.
By choosing hierarchical boundaries such that different
terrains are contained in separate hierarchical objects,
specialized algorithms may be individually applied to
each object.

Hierarchy is also used to reduce the problem size for
VLSI designs. Both run time and storage requirements
for flat designs are rapidly becoming unmanageable as
transistor counts climb from the hundred’s of thousands
to the millions transistor and above range. Building a
hierarchical model of the design allows run time and
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storage requirements for processing the hierarchical
objects to be much less than that of a flat model. The
flat model tends to force the designer into an “all or
nothing” approach to the design. The hierarchical model
lends itself easily to incremental design without the
complexity of managing incremental update capability
in all the individual tools {1].

But, the use of a hierarchical design model introduces
some new problems. The major problem encountered is
the increased data model complexity of the design and
timing analysis consistency between two views (flat and
hierarchical view) of the same design. Instead of a single
representation of the design, we were required to
manage a complex hierarchy of these representations
and guarantee on final build that we have assembled all

the correct versions and our timing analysis is consistent.

2.2 Timing analysis
The simple inverter circuit is shown in (Fig. 2). The
load on the inverter is a single resistor-capacitor (RC)
circuit; the resistance and capacitance come from the
logic gate connected to the inverter’s output and the wire
connecting the two. While the circuit in (Fig. 2) has only
a few components, a detailed analysis of it is difficult
due to the complexity of the transistor’'s behaviour.
Typically a single equation is used to describe the
behavior of a circuit, both in terms of cell pin-to-pin
delay as well as the transition time of the signal at the
output pin. The typical delay equation [2] is of the form
r = f(t,C) = Axt, + B+Ci + C#txC + D 1
The circuit delay, r, is a function of the input transition

time, t;, and capacitive loading, Ci, on the output port.
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(Fig. 2) The simple inverter circuit
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Characterization constants, A thru D, is predetermined
and stored in the table. Characterization data is used by
synthesis and timing verification.

Analyzing the delay of a single gate isn’t sufficient
to know the delay through a complex network of logic
gates. For the purpose of a timing analysis, a syn-
chronous system can be viewed as a collection of blocks
and nets interconnecting them. We will distinguish four
types of blocks, namely; combinational, synchronizing
(storage, registers), primary inputs (PIs) and primary
outputs (POs). The signals in the system originate in
the PIs or synchronizing elements, travel through the
combinational blocks and wires interconnecting them
and terminate at the POs or synchronizing elements.
Thus, loosely speaking, the timing analysis problem is
to determine that all the Pl/storage - - PO/storage path
delays do not exceed the pre-specified values.

(Fig. 3) shows an example of gate and circuit model
of the partitioned combinational network. It is important
to maintain the signal integrity for long global
interconnect line which traverses multiple blocks.
Assigning proper timing budgets to each partitioned
block is of major concern in a timing analysis of a
hierarchical design.

(Fig. 3) Circuit mode! of global wire for combinational logic

2.3 Partitioning

A graph G = (V, E) in (Fig. 4(a)) consists of 7 nodes
and 11 edges. Each node in (Fig. 4(a)) might represent
a transistor, a cell, or a custom circuit. Therefore, a
graph in (Fig. 4) is also a hypergraph. A hypergraph
H = (V, E) consists of n nodes and m hyperedges. A
hyperedge ¢ in E is defined by a subset of nodes Ve
in V. Circuit partitioning is abstracted and formalized

(Fig. 4) flat net list and 2 level partition net list

Partition : X — Y, X is a hypergraph and so is Y.
Flatten(Y)= Y’ is identical to X, i.c.,
h:Y'—X is a topological, functional isomorphism.

as an operation on hypergraphs. An exact or an appro-
Ximation algorithm for hypergraph partitioning is also
an exact or an approximation algorithm for circuit
partitioning. Thus, the algorithms described in this paper
for hypergraph partitioning apply for circuit partitioning
as well. (Fig. 4) shows a typical example of “partition”
and “flatten” process. In a partitioning process, node 1
and 2 are merged. Also, nodes 4, 5, and 7 are also
combined as one super node. The above partitioning
process makes a new hypergraph with a netlist Y which
has four nodes. Net 6 in X does not exist anymore in
a new netlist Y. The design process, synthesis and
analysis, is applied to a new netlist Y. Sometime later,
Y should be back to its original form. We call this
process as “flatten”. A new netlist Y’ in (Fig. 4) is a
netlist after flattening Y. Formal relation between three
netlists are defined as follows;

3. Problem Formulation

Traditional design flow starts with micro-architecture
development with performance as a goal. A textual
description is then completed, and this is followed by
RTL. RTL generation phase places more emphasis on

functionality than timing. It's only during the late circuit
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design phase we get a reasonable exposure to full chip
timing in any detail. This results in a significant amount
of time and resource being spent after silicon is available,
trying to fix critical paths. In this post-silicon timing
design mode, since the die size, floorplan, and archi-
tecture are fixed, there is very little flexibility to correct
these timing errors. In theory, complete layout data is
required to do a high confidence timing analysis. We are
actually in a “chicken and egg” situation. So we need
to start timing estimations early and accurate, and
continue to refine them.

In a typical timing analysis of a hierarchical design,
timer is applied to each partitioned block with timing
budget and local RC information and is also applied to
the parent block with child blocks represented by black
blocks. This step continues as we reach the top level.
In this process, there exists timing differences compared
to the method as would the application of a timer on
a flat design. Assume that there exists a path p in X
and q is the corresponding path in Y’ in (Fig. 4). There
might be a delay difference due to different view of the
same path. Relation between these paths are formally
defined as follows;

& = max | delay (p) - delay {(q) |

Vpin X

Consistent Result =Pgpservavility =

V [p € Pusiticat = Q € Quritica, | delay (p) - delay (q) | < €]

Now our problem can be stated as follows; given a
timer T, a flat netlist X, how to partition X into
sub_blocks, such that the application of T on the
sub_block and on the top level block with the sub_blocks
represented by black boxes vields “consistent result”

as would the application of T on X.

If the sub_block boundaries cut net n into 1 segments,
write n =n; | m2} ... | nasin (Fig. 5.

We now show relationship of timing results on the
application of timer at the partitioned circuits.

Define T(mlnal....In;) T(ny) - T(no) * - T(m),

where T(ny) is a piecewise evatuation. Then, the problem

formulation can be written as
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(Fig. 5) a net is divided by five segments

[T -T(ulngl....lm) | < € (2)

Equation (2) shows accuracy of piecewise evaluation
as &

As we see in the preceding analysis, some critical
paths are hidden on the application of timing analysis
of the hierarchical design. As these critical paths are
hidden until tapeout, it represents the worst case
scenario in VLSI design. Also paths that are shown as
critical but not true in a flat design represent false paths.
These paths are also worrisome as lots of resources are
wasted to correct non—cntical paths. Section 4 propose
a new algorithm to main the consistent results between

the hierarchical and flat design.

4, EACPP Algorithm

4.1 Classification of paths in a F/F based design

A nontrivial path, p, is a complete path iff source
terminal of p is either a chip pad or an output of a F/F
and a sink terminal of p is either a chip pad or an input
of a F/F. (Fig. 6) shows an example of complete and
incomplete paths. P, and Py, are not a complete path, but
Pc is so as defined above.

Now, we will show the meaning of a complete path

F/F F/F

P, =1ns

2T P, =3ns

P, =2.2ns

(Fig. 6) example of complete and incomplete paths
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in a timing analysis. Assume that clock cycle time is
2 ns and total delay of P in (Fig. 6) is 2.2 ns. If a clock
signal artives at the source F/F 0.1 ns earlier and arrives
at the sink F/F 0.1 ns late, then a path P is not a critical
path on a flat timing analysis. But, if a source and a
sink F/F is partitioned into different modules, then as
a skew in the source F/F is hidden P. might be classified
as a critical path in the hierarchical timing analysis.
Therefore, a complete path is the key to the observability
and we derive the following definition.

A complete path, £, such that p=tlg or git where ¢ is
a trivial path, then ¢ is called an afmoest camplete path. A
similar classification is used for paths in sub_blocks, too.
A nontrivial path, £, in sub_block is a §uff path iff source
terminal of # is either an input of a partitioned block
or an output of a F/F and sink terminal of 4 is either
an output of a partitioned block or an input of a F/F.

Assume that ¢ is a path in an original flat design and
a critical path. Depending on the partition structure, ¢
can be easily observed in the partitioned design or can
be the other way. In the following section, we define
properties or structures that are required on partition
such that ¢ can be observed on a sub_block timing
analysis, T(By), and a global timing analysis, T(Y).

4.2 Constraints generation

Run timing analysis on the partitioned logic block
requires two constraints, input arrival time and output
required arrival time. Usually the constraints are ge-
nerated a number of times as designs of each individual
block progress during the lavout steps so that the
interactions between the blocks can be reflected. We
refer this concept as the dynamic timing constraints. The
dynamic timing constraints generate a dynamic set of
constraints to enable the design to converge a better
optimal solution. The earliest time that constraints are
to be discovered is at the global timing analvsis after
the first iteration of timing analysis of every sub_block
in a design. The procedure to allocate and generate
timing constraints (or timing budget) is outlined as
follows;
1. hun timing anafysis on each Block independenily,

2. wun global timing analysis using the resubts of step!.

3. aflocate timing budget on each Block.

4. apply timing analytis tool on the first block and identify the
consbraints.

5. select a Block whene ofl the constrainit are available. Do step 4.

6. repeat slep 5 until the conuergence test 4 satisfied.

As we see in (Fig. 7), to generate “proper” constraints
for P;, we need knowledge of all connected timing paths.
As the constraints on each sub_block are consistently
updated, assigning proper constraints is not an easy pro-
blem. The specification should be proper and consistent
and path correction of one sub_block should not overkill

at the same time.

-
—
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—

(Fig. 7) Sensitivity of constraints

From this analysis we can conclude that a timing
methodology which must maintain/update a large set of
complen consbaints has low probability of achieving
observability. If observability is not achieved, undis-
covered critical paths will show up sometime after
tapeout and the complexity of a timing methodology
depends on partitioning.

A constraint specification is called a simple constraint
iff it can be “properly” generated before timing analysis,
ie., before T(Bi) & T(Y). A constraint specification is
called a complex costraint iff it can only be properly
generated after some i-th iteration of T(Bi) & T(Y).

4.3 Partition complexity
Given par:’X — Y, let p be a complete path in Y. If
partition cuts £ into i segments, then observing g

requires (i-1) “proper” constraint specifications. Define

m(par) = PEl;mﬂle[JP'wts , where |Plcuts =
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{O if par does not cut a path p

1-1 if par cuts p into i segment

Therefore, m(par) becomes the number of constraints
that must be generated/maintained/updated by a timing
methodology which employs par:X — Y. We use m(par)
to measure the complexity of par:X — Y such that the
optimal par has m(par)=0, i.e., which is a trivial partition.

Even though a path p; in (Fig. 8) is not a complete
path, specifying a delay, d, effectively moves the block
boundary for p; back to the output pin of the F/F.
Therefore, p; is essentially a complete path even though
it is classified as an almost complete path. Therefore,
the constraint for an almost complete path is a simple
constraint since it can be generated prior to a timing

analysis.

A H

FIF  f————— FIF

(Fig. 8) example of an almost complete path

4.4 Everywhere Almost Complete Path Partition (EACPP)
If every full path in X is either complete or almost
complete, then a partition, par:’X — Y, such that every
full path in each sub_block, B;, is an almost complete
path is called an everywhere almost complete path
partition (EACPP) and B; is called an almost complete
path sub_block. EACCP has the following properties;

1. mipar) <= |Peompletel.

2. all constraints are simple constraints and every

sub_block is independent.

Let denote Critical(T(A)) = {p | p is critical in A and
is found by T(A)}. Then the following independence
lemma holds. The lemma shows the condition that no
global timing analysis is required, which means X can be
analyzed independently by analyzing each sub_block, Bi.

Lemmal (Independence)
let par:X — Y is an everywhere almost complete path
partition that divides the design into n sub_blocks. Let

them be B, Bz . . Bn If the application of all simple
constraints on each Bi is such that critical T(B;")) = &
Vi = critical (T(X)) = @ or critical(T(Y))=¢.

Proof

Assume for all 1, Critical(T(Bi")) = @. If Critical( T(X))
= & then there exists 4 that is critical in X such that
h'(¢) = pin Y’ is critical. By the definition of par'’X —
Y, » = tlp’ or #'lt where p’ is an almost complete path
in some B in Y. Now the application of the simple
constraint, delay(t), on 4’ effectively makes it a complete
path. So if # is critical, T(B;’) would have found it, i.e.,
Critical(T(B;")) = @ which contradicts earlier assump-
tion. Therefore, it must be the case that Critical(T(X))
=@, n

Observe that if B; has an everywhere almost complete
path partition(EACPP), then Bi can further be decom-
posed into smaller, independent subproblems. But, there
are many factors that hinder decomposing the circuit
into EACPP. Careless or random decomposition might
lead to uneven(too large or too small) or unrelated or
incompatible sub_blocks. To achieve a balanced EACPP,
design hierarchy and partition must be considered or
planned in the early design phase. The main factor which
hinders the creation of a balanced EACPP is a clock
signal.

Assume all data paths in B are almost complete or
complete. To make B into an almost complete path
sub_block, we need to specify constraints on the input
clock pins to B so that all clock paths become effectively
complete. The clock constraints are complex constraints,
which means that they can only be generated after
T(clock network). Therefore, we separate the clock and
data paths and generate all the clock network delay upto
the clock pin on the boundary of each sub_block. EACPP

algorithm is shown as follows;

* abatract clack network from J(RI')

/* separate the clock logic and data signals */
o W clook network) for shew.

/% do a timing analysis on clock signals only */
* account for skeur.
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/# calculate clock skew on each F/F */
* loop /* repeat clustering */
consbruct o sub_Block with o tingle cell,
/* it could be a F/F or any other cell */
(7773
add o neighbaur cell.
if there enists o full path, b, in o ub_Block
that is neither complete non almost complele, then extend p
by adding to Bi other nels and cefls until p is either complete
ar abmost complete
until o sub_ Block b 4 an abmost
until ol the cells befong to a Bluck.

plete path sub_Bloct.

5. Experiments and Discussion

The main goal of our approach is to achieve the timing
closure as early in the design cycle as possible so that
we avoid a significant design time increase. The pro-
posed methodology which guarantees critical observa~
bility compares well with other physical design tools
such as TDP(Timing Driven Placement) [3, 4, 5, 8]. Ex-
periments were done on the Poughkeepsie serial chip
using standard EDS tools. Experiments process were to
compile all of the VHDL codes into a single entity. The
logic is partitioned into segments of almost equal size.
Before the segments are placed, circuits are migrated
to make each segment EACPP as much as possible. The
segments are then placed and static timing analysis tool
generates critical paths. After segment placement, both
wirability and timing are improved by moving individual
circuits in the critical path. After each trial move
affecting a critical path, acceptability of the trial move
is performed on that path based on EACPP, timing, and
wirability. The circuit has 11,500 cells and are partitioned
into 60 segments. Twenty critical and almost zero-slack
paths which become complete paths by circuit migration
are selected. <Table 1> compares TDP-only approach
with TDP-EACPP approach.

The complete design for a medium size chip which
is guaranteed to meet all guidelines and performance
constraints is a complex process involving placement,

wiring, checking, and timing analysis. On average, 2

“minor” timing correction cycles were required. A minor
“correction” involves analysis and manual wiring
changes. On the other hand, without TDP and EACPP,
we speculate that it would have been necessary to do
2 “major” corrections involving analysis, placement, and
wiring. A major correction requires that placement and

wiring be re-done.

{Table 1> Experimental results

TDP-only’ | TDP with EACPP|
Worst slack difference 48 0.9
Best slack difference 0.1 0.0
Average slack difference 19 0.2

=unit : % cycle time

6. Conclusion

In this paper, we address a potential timing problem
in the hierarchical design methodology. As there is a
high chance that some critical nets are not discovered
during timing analysis on the hierarchical design and
show up later after tape out. Therefore, we introduce
the complete path concept that is a key to observability.
Observability is defined as the ability to discover all the
critical paths that the flat method would discover.
Complete path also enables a design to be partitioned
into independent sub_blocks prior to timing analysis. We
also introduce and define paths which could be treated
as complete paths and classified them accordingly.
EACPP algorithm and experiments with it is also
described. In future research, the tools or infrastructure
to support the automatic generation of simple constraints
are to be studied to achieve the global timing automation
for EACPP designs. Also to achieve a useful and
balanced EACPP, a research should be done to establish
a method to plan hierarchy early in the design phase.
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