유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method

  • 김용 (단말기 사업부 현대전자)
  • Kim Y. (Mechanical Engineer Sr. R&D Team 7. Hyundai Electronics Industries)
  • 발행 : 2000.06.01

초록

나이에 의한 외부의 환경조건의 변화는 이에 적응하려는 척추의 구조적인 변화를 가져온다. 이러한 구조적인 변화는 척추의 biomechanical 거동에 영향을 미칠 것이다. 이러한 구조적인 변화의 효과를 연구하기 위하여, 나이에 의한 척추의 재료 및 기계적인 물성의 변화는 제외되었다. 유한요소법 (finite element method)에 의한 lumbar spine model (L3-L4)에 있어서, Annulus 의 유한요소 모델은 laminate composite elements로서 16개의 layer와 6개의 물성으로 구성되어있다. Spinal stiffness 와 facet reaction은 나이가 들수록 증가했다. 나이가 들수록 inner annulus의 fiber/layer tensile strains, cancellous bone stress 및 end-Plate stress는 감소했다. Fiber/layer compressive strains, facet reaction, ligament reaction and end-plate rigidity는 나이에 의한 척추의 구조적인 변화에 의하여 증가했다. 따라서 나이에 의한 척추의 정상적인 쇠퇴과정에 있어서 척추의 구조적인 변화는 spinal stiffness를 증가 시켜서 척추 및 disc의 지나친 변형을 감소시킬 것이다.

Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

키워드

참고문헌

  1. Spine v.20 Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus E.R. Acaroglu;J.C. Latidis;L.A. Setton;R.J. Foster;V. C. Mow;M. Weidenbaum
  2. J. Bone. Joint Surge (Br) v.78 no.6 Stress distributions inside intervertebral discs: The effects of age and degeneration M.A. Adams;D.S. McNally;P. Dolan
  3. J. Anat v.175 Morphometric Changes in the Heights and Anteroposterior Diameters of the Lumbar Intervertebral Discs with Age H.S. amonoo-Kuofi
  4. J. Anat v.186 Age-related Variations in the Horizontal and Vertical Diameters of the Pedicles of the Lumbar Spine H.S. Amonoo-Kuofi
  5. Spine v.19 Cpmpressive Mechanical Properties of the Human Annulus Fibrosus and Their Relationship to Biochemical Composition B.A. Best;F. Guilak;L.A. Setton;W. Zhu;F. Saed-Nejad;A. Ratcliff;M. Weidenbaum;V.C. Mow
  6. Spine v.7 Aging Change in the Macromolecular Organization of the Intervertebral Disc: an X-ray Diffraction and Electron Microscopic Study D.S. Hickey;D.W.L. Hukins
  7. J. Orthop Res. v.15 no.6 Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent Y. Fujita;N.A. Ducan;J.C. Lotz
  8. Spine v.20 Interlaminar Shear Stresses and Laminae Separation in a Disc V.K. Goel;B.T. Monroe;L.G. Gilbertson;P. Brinckmann
  9. Spine v.18 no.1 Etiology of Spondylolisthesis:Assessment of the Role Played by Lumbar Facet Joint Morphology L.J. Grobler;P.A. Robertson;J.E. Novotny;M.H. Pope
  10. Spine v.22 no.1 Nonhomogeneous permeability of canine annulus fibrosus Houben GB;Drost MR;Huyghe JM;Janssen JD;Huson A
  11. The winter annual meeting of the ASME v.9 Biomechanics of Chemonucleolysis Y.E. Kim;V.K. Goel
  12. J. Bone & Joint Surg. v.60 Mechanical Response of the Lumber Intervertebral Joint under Physiological (Complex) Loading H.S. Lin;Y.K. Liu;K.H. Adams
  13. Spine v.15 Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosis F. Marchand;A.M. Ahmed
  14. Bone v.8 Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash density and Age in Normal Individuals L. Mosekilde;L. Mosekilde;C.C. Danielson
  15. Acta Orthop Scand v.Suppl 43 Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash density and Age in Normal Individuals L. Mosekilde;L. Mosekilde;C.C. danielson
  16. Acta Orthop Scand v.Suppl 43 lumbar Intradiscal Pressure A.L. Nachemson
  17. J. Biomech v.1 Some mechanical Properties of the Third Lumber Inter-laminar Ligamet [ligamentum flavum] A.L. Nachemson;J. Evans
  18. Gerontology v.39 no.6 Effects of Age and Gender on Functional Rotation and Lateral Movements of the Neck and Back O. Netzer;V.G. Payne
  19. J. Bome & Joint Surg v.76-A no.3 Mechanical Behavior of the Human Lumbar and Lumbosacral Spine as shown by Three-Dimensional Loadd-Displacement Curves M.M. Panjabi;Oxland, I. Yamamoto;J.J. Crisco
  20. Spine v.18 no.10 Articular Facets of the Human Spin: Quantitative Three-Dimensional Anatomy M.M. Panjabi;VT. Oxland;K. takada;V.K. Goel;J. Duranceau;M. Krag
  21. J. Biomech Engr ASME v.101 mechanical Properties of Human Lumbar Spine Motion Segments- Part Ⅰ: Responses in Flexion, Extensio, Lateral Bending, and Torsion A.B. Schultz;D.N. Warwick;M.H. Berkson;A.L. Nachemson
  22. J. Biomechanical Engineering v.120 Modeling of Facet Articulation as a Nunlinear Moving Contact Problem: Sensitivity Study on Lumbar facet Response. ASME M. sharma;N.A. Langrana;J. Rodriguez
  23. J. Biomechanical Engineering v.20 Load-bearing Role of facets in a Lumbar Segment under Sagittal Plane Loadings A. Shirazi-Adl;G, Drouim
  24. Spine v.9 Stress Analysis of the Lumbar Disc-body Unit in Compression A. Shirazi-Adl;S.C. Shrivastva;A.M. Ahmed
  25. J. Biomech v.27 Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion-Mechanics of Facet Articulation S.A. Shirazi-Adl
  26. Spine v.19 no.12 Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosis D.I. Skaggs;M. Weidenbaum;J.C. Latridis;A. Ratcliffe;V.C. Mow
  27. Spine v.19 The Influence of Age and Gender on Lumnar Spine Sagittal Plane range of Motion A Study of 1126 Healthy subjects M.S. sullivan;C.E. Dickinson;J.D. Troup
  28. Rheumato logy and Rehabilitation v.19 Sagittal and Horizontal Plane Movement of the Human Lumbar Vertebral Column in Cadavers and in the Living J. Taylor;L. Twomey
  29. J. Biomechanics v.104 Some Static Mechanical Properties of the Lumbar Intervertebral Joint, Intact and Injured A.F. tencer;A.M. Ahmed;D.L. Burke
  30. Clin Orth. And Related Research v.224 Age Changes in Lumbar Vertebrae and Intervertebral Discs L.T. Twomey;J.R. Taylor
  31. Spine v.21 no.7 Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc S. Umehara;S. Tadano;K. Abumi;K. Katagiri;K. Kaneda;T. Ukai
  32. Clinical Biomechanics of the Spine(2nd ed.) A.A. White;M.M. Panjabi;J.B. Lippincott