The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments

Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰

  • Kim Y. (Senior Mechanical Engineer R&D Team 7 Telecommunications Terminal Division Hyundai Electronics Industries Co.)
  • 김용 (이동통신단말기 사업부, 현대전자)
  • Published : 2000.06.01

Abstract

It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

뼈의 성장에 미치는 많은 요소들 중에서 implant의 상대적인 미세운동(relative micromotion)은 뼈의 implant와의 접합을 방해하는 것으로 알려져 왔다. 그런데 이러한 상대적인 운동 및 spinal stability에 직접적으로 영향을 주는 하중조건, spinal material의 물성치, spinal geometry 및 뼈와 implant의 접촉면에서의 마찰계수를 고려하기 위하여, 하나의 titanium interbody cage 가 삽입된 human lumbar segments (L4-L5)의 유한요소 모델이 개발되었다. 이러한 유한요소 모델의 해석을 통하여 상대적인 미세운동, Posterior의 수직적인 변위, von Mises 응력 및 마찰력이 예측되었다. Cancellous bone. annulus fibers 및 ligaments의 기계적인 물성치의 감소 또는 접촉면에서의 마찰계수의 감소는 상대적인 미세운동 (relative micromotion or slip distance)을 증가 시켰다. 접촉면에서의 normal force는 뼈의 밀도 (cancellous bone density) 가 감소하거나 접촉마찰계수가 증가하면 감소했다. 특히 하중조건에 있어서, compressive preload에 대한 torsion의 추가는 접촉면의 anterior부위에서 상대적인 미세운동을 증가 시켰다. 하지만 디스크면적이 증가할수록 상대적인 미세운동은 감소했다. 결론적으로, 접촉면의 기계공학적 거동 (Relative micromotion, stress response, posterior axial displacement and contact normal force)은 접촉면의 마찰계수 뼈의 밀도, 하중조건 및 노화에 따른 형상/물성의 변화에 매우 민감함을 보이고있다.

Keywords

References

  1. Spine v.20 degeneration and Aging Affect the Tensile Behavior of Human Lumbar Annulus Fibrosus E.R. Acaroglu;J.C. Latidis;L.A. Setton;R.J. Foster;V.C. Mow;M. Weidenbaum
  2. J. Anat v.186 Age-related Variations in the Horizontal and Vertical Diameters of the Pedicles of the Lumbar Spine H.S. Amonoo-Kuofi
  3. J. Dental Research v.10 The Influence of Functional Use of Endosseous Dental Implants on the Tissue-implant Interfaces J.B. Brunski;F.M. Aquilante;S.R. Pollack;E. Korostoff;D.I. Trachtenberg
  4. Spine v.18 Mechanics of Interbody Spinal Fusion-Analysis of Critical Bone Graft Area R.F. Closkey;J.R. Parsons;K.C. Lee;M.F. Blacksin;M.C. Zimmermant
  5. Bone Mechanics (2ed) S.C. Cowin
  6. Spine v.18 no.12 The Effects of a Stiff Spinal Implant and Its Loosening on Bone Mineral Content in Canines D.O. Dalenberg;M.A. Asher;R.G. Robinson;G. Jayaraman
  7. J. Biomechanical Engineering ASME v.116 Investigation of Vibration Characteristics of the Ligamentous Lumbar spine Using the Finite Element Approach V.K. Goel;H. Park;W. Kong
  8. Spine v.18 no.1 Etiology of Spondylolisthesis: Assessment of the Role Played by Lumbar Facet Joint Morphology L.J. Grobler;P.A. Robertson;J.E. Novotny;M.H. Pope
  9. Eur Spine J. v.7 Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density B. Jost;P.A. Cripton;T. Lund;T.R Oxland;K. Lippuner;P. Jaeger;L.P. Nolte
  10. Computer methods in Biomechanics and Biomedical Engineering Finite Element Analysis of Interbody Cages in a Human Lumbar Spine Y. Kim;R. Vanderby
  11. J. Biomechanics v.27 no.10 Stress Analysis of a Canine Spinal Motion Segment Using the Finite Element Technique T.H. Lim;V.K. Goel;J.N. Weinstein;W. Kong
  12. J. Bone Joint Surg (Br) v.80 Interbody cage stabilization in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density T. Lund;T.R. Oxland;B. Jost;P. Cripton;S. Grassmann;C. Etter;L.P. Nolte
  13. Spine v.15 no.5 Investigation of the Laminate Structure of Lumber Disc Annulus Fibrosis F. Marchand;A.M. Ahmed
  14. Bone v.8 Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Density and Age in Normal Individuals Le. Mosekilde;Le. Mosekilde;C.C. Danielsen
  15. Acta Orthop Scand v.Suppl 43 Lumbar Intradiscal Pressure A.L. Nachemson
  16. J. Biomech v.1 Some mechanical Properties of the Third Lumber Inter-laminar Ligament [ligamentum flavum] A. Nachemson;J. Evans
  17. Spine v.17 Human Lumbar ?Vertebrag-Quantitative Three-Dimensinal Anatomy M.M. Panjabi;V.K. Goel;K. Takata;J. Duranceau;M. Krag;M. Price
  18. Spine v.18 no.10 Articular Facets of the Human Spine: Quantitative Three-Dimensional Anatomy M.M. Panjabi;T. Oxland;K. Takada;V.K. Goel;J. Duranceau;M. Krag
  19. Clinical Orthopaedics and Related Research v.156 Radiographic and Morphologic Studies of Load-bearing Porous-surfaced Structured Implants R.M. Pilliar;H.U. Cameron;R.P. Welsh;A.G. Binnington
  20. ASME Bioengineering Summer Conference A Biomechanical comparison of two lumbar interbody cages A.J. Rapoff;A.J. Ghanayem;T.A. Zheblick
  21. Eur Spine J v.7 The role of Supplemental translaminar screws in anterior lumbar interbody fixation: a biomechanical study G.C. Rathonyi;T.R. Oxland;U. Gerich;S. Grassmann;P. Nolte
  22. J. Biomechanics v.27 no.3 Nonlinear Stress Analysis of the Whole Lumbar Spine in Torsion-Mechanics of Facet Articulation A. Shirazi-Adl
  23. Journal of Biomedical Materials Research v.27 Experimental Determination of Friction Characteristics at the Trabecular Bone.Porous-coated Metal Interface in Cementless Implants A. Shirazi-Adl;M. Dammak;Paiement
  24. Spine v.19 no.12 Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosis D.L. Skaggs;M. Weidenbaum;J.C. latridis;A. Ratcliffe;V.C. Mow
  25. Spine v.20 Biomech anical Properties of Threaded Inserts for Lumbar Interbody Spinal fusion A.F. Tencer;D. Hampton;S. Eddy
  26. Clinical Orthopedic Related. Reserch v.123 Reversal of Tissue Differentiation around Screws in Bone H.K. Uhthoff;J.B. Germaine
  27. Clinical Biomechanics of the spine (2ed) A.A. White;M.M. Panjabi
  28. Titanium Alloy Handbook R.A. Wood;B.J. Favor