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Lindley Type Estimators with the Known Norm !

Hoh Yoo Baek 2

Abstract
Consider the problem of estimating a p x 1 mean vector O(p > 4) under
the quadratic loss, based on a sample z;,--- z,. We find an optimal decision
rule within the class of Lindley type decision rules which shrink the usual one
toward the mean of observations when the underlying distribution is that of a
variance mixture of normals and when the norm || 8 — 1 || is known, where

P
6= (1/p) Z 6; and 1 is the column vector of ones.

i=1
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1. Introduction

The problem considered is that of estimating with quadratic loss function the
mean vector of a compound multinormal distribution when the norm || § — 81 I
is known. The class of estimation rules considered will consist of Lindley type
estimators only. Such a class was introduced by James-Stein (1961) and Lindley
(1962) in order to prove that some of its members dominate the sample mean in the
multinormal case. Strawderman (1974) also derived a similar result for the more
general case considerd in this paper of a compound multinormal distribution.

The paroblem of estimation of a mean under constraint has an old origin and
recently focussed again in the context of curved model in the works of Efron (1975),
Hinckley (1977), Amari (1982), Kariya (1989), Perron and Giri (1990), Marchand
and Giri (1993) among others. A study of compound multinormal distributions and
the estimation of their location vectors was carried out by Berger (1975).

In Section 2, we present the general setting of our problem and develop necessary
notations. In Section 3, we derive the best Lindley type estimator of a mean when the
norm || § — 61 ||2 is known. Examples of these best estimators are given in Section 4.
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2. Notation and Preliminaries

Let X = (X31,---,Xp), p > 4 be an observation from a compound multinormal
distribution with unknown location parameter §(p x 1) and mixture parameter H(-),
where H(-) represents a known c.d.f. defined on the interval (0, c0). In other words,
we assume that the random variable X generating our observation z admits the
representation,

L(X|Z = z) = Np(8, zIp), V2> 0, (2.1)

Z being the positive random variable with c.d.f. H(-).
Our problem concerns the estimation of the location parameter § with loss func-
tion

L(g, &(z)) = (d(z) - ) (8(z) - 0),

P
with 0 € Oy = {0 € R?| || 8—F1 |]= A, 0 < A < oo}, where § = %Zai,
1
' =(1,---,1) and the decision rule 4, 4(-) : R? — R?, is of the form

 (z-z1)(z—11)

6(_1:_)=a':l+<1 )(g——:ﬂ), ceR.

Restated in terms of the family of probability density functions of X, the distri-
butional assumption given by expression (2.1) and the restriction on the location
parameter § indicate that the p.d.f. of X is

_ _ 2
ni@)= [ _(ne)#eap( A )an(s) (22)

z € RP and @ € ©,. It will be also assumed that E(Z) < oo which will guarantee
the existence of the covariance matrix Y = Cov(X) = E(Z)I, and the mean vector
E(X) = 8. The performance of the estimator ¢ will be measured by its risk function

R(8,6) = Ey[L(8,6(X))] = Ep[(8(X) ~8)(6(X) - 8)), 8 € O, .

3. Optimal Lindley Estimation when the norm || § — 61 || is known

In this section, the best estimator is derived within

Diima = {6 : RP — RP|§(z) = 6°(z) = 71 + (1 _ )(gz_ _z1), ceR},
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where the parameter space is of the form
Or={0€R?| [ 0-0L]=A}, A>0.

The following lemmas will prove useful in the evaluation of the risk function of the
decision rule 6%, ¢ € R.

Lemma 3.1. Let X be a random multinormal vector N,(8,1,), p > 4 and
0 € RP. Then

O =g —m—xp) == (=)

(i) E"((gcx Q)(?(X Xx?)) EL(pf’z?_L?’—?’)’

where L is a Poisson random variable with mean (6 — 81)'(8 — 61)/2
Proof. See James and Stein(1961) and use Stein’s Identity

and

Lemma 3.2. Let X be a compound multinormal vector with location parameter
9;p > 4 and § € R? ; and known mixture parameter H(-) with p.d.f. of the form
given in (2.2). Then, with A =|| 8 — 1 ||

0 o (75— ;)}(x-x;)):/(ooo) SNPL

(X - 8Y(X - X1)
() By (75— i)~ fo.) B 2HG)

where the function fy(:,) : [0,00) — (0, 00), is defined by the relation
00 -2 a2yi
E ()
A, z) = —-—_2.:‘__ .
5% 2) ?:‘OJ!(p+2J—3)

Proof. (i) Using both the representation given in (2.1) and part(i) of Lemma
3.1, we obtain

and

a(—xa—w) - F17E s ate ol

o)
- /(0.00) IJZ:IJ'(P‘F?J—?’)
= /0 Fo(A, Z)dH(Z)

dH(z)
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(ii) Again, combining the representation given in (2.1) and part(ii) of Lemma 3.1,
we obtain

(X -0)(X - X1) 2 ox12[\VZ )Tz
E = = = FF 2 2
2((&-—){1)'(_&—)@)) { 2 [(z;gl)'(x;gl)”
_ © e E (XY p-3
- /woo)Z A iy 3@

— (p-3) /(000) £, 2)dH(z) .

The main result of this section now follows.

Theorem 3.3. Let X be a single observation from a p-dimensional location
parameter with p.d.f. of the form given by (2.2). Under the assumptions 8 €
©,, p> 4 and E[Z] < co, the unique best estimator within the class Dy, is given
by 6V where

Jio,00) fr(As 2)dH (2)

3.1
Jio00) Fo(A, 2) 22 (31

¢ =(p-3)

Proof. Under the assumptions above, we can easily derive the result Eg(X'X) =
9’9 + pE(Z). Combining this with Lemma 3.2, we have

R, 5)
= B (X) - 8/(5°(X) - 6)
) i (X - 8/(X - X1)
= vE@)+ B = )~ P o x5

~ pE(Z)+ [cz /(o’oo) £ 2) de () _ 9e(p—3) /(Om) A0 z)dH(z)]
— pE(Z)+ { /(o’oo) [C; — e(p— 3)} £ z)dH(z)} . (3.2)

From this last equality, we obtain easily that
inf.erR(8, 6°) = R(@, ¢W)

with ¢*()) given by expression (3.1).
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Using expression (3.2), the minimum risk attained by the best Lindley type
estimator is equal to

Jio.00) Fo(, 2)dH(2))°

R(8, 5°M) = pE(Z) — (p - 3)?
Jioo) fo(A, 7))

y QE@,\

When || § ~ 81 ||= ), the use of other estimators of the Lindley class other than
8¢ will incur risk which is a strictly increasing function of distance |c — c*(A)|.
To see this, we can define h()) such that ¢ = h(A)c*(\) and, using expression (3.2),
express R(8, °) as

[f(o,oo) fP(A’ Z)dH(Z)]2

E(Z —3)2[R%(\) — 2R(\ 3.3
pE(Z) + (p—3)°[R°(A) (N)] ome) Fon RELD) (3.3)

From this we can write
R@, )= R@ ) =le=cF [ f(o 52 (34

The natural estimator §°(z) = z is a member of the Lindley class and has a
constant risk function equal to pE(Z). We can also characterize the estimators of
the Lindley type that dominate the natural estimator §°.

Corollary 3.4. Under the conditions of Theorem 3.3, the decision rule §¢ will
dominate the natural estimator §° if and only if 0 < ¢ < 2¢*()).
Proof. Using expression (3.3), one easily sees that, for 8 € ©,,

R(8, &) < R(g, 6°) = pE(Z)
& h*(A)—-2h()\) < 0
& 0 < h(A) < 2
& 0 < e < 2N

4. Examples

The class of compound multinormal distributions is quite large and, in this sec-
tion, we present some examples of the evaluation of the best Lindley type estimator
for different choices of the underlying distribution of X or, equivalently, of the mix-
ture parameter H(-).
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Example 4.1. For X ~ N,(8, 0%1,), p> 4, (i.e. H(Z) = (52 00)(Z) with 14(-)
being the indicator function of the set A); we deduce from Theorem 3.3 that

f p(>‘) 62)
f p(Ar 02)/ 02
and that the best estimator within the Lindley class Dring is equal to

(p - 8)a?
(- 21)(z - 1)

c(A) =(p-3) =(p-3)o*,

569" (g) = 21+ (1 ~ )(z. ~zl),
irregardless of the value of the norm A =|} 8 — 81 |.

For non-normal cases, the following explicit formula for the quantity f;(v) =
EL{(p+ 2L - 3)7Y], L ~ Poisson(y), given by Egerton and Laycock (1982) prove
useful for the evaluation of the function ¢*(A), A > 0.

Lemma 4.1. Let L be a Poisson random variable with mean v, v > 0, and
f3(y) = E*{(p+2L - 3)7"] ; p>4; then

0o = [ eierat,
0]

and
(i) £42(v) = @)L = (P - 3)E ()] - (4.1)

For even values of the dimension p, the recurrence formula given by expression (4.1)
permits the expression of the function f;(-) as a function of f{(-). From part(i) of
the preceding lemma,

i = e[ etar
[0,3)

= 7iD(y),

where D(z) = e~ f(O,z) etzdt, x > 0, is known as Dawson’s integral which is tab-
ulated in Abramowitz and Stegun (1965). For odd values of the dimension p, the
recurrence formula given by expression (4.1) permits the expression of the function
f;(-) as a function of f3(-). From part(i) of Lemma 4.1,

() = e‘"’/ te™ dt
(0.1

= 2N71-eM). (4.2)

We now proceed with the evaluation of the best Lindley estimator in the contami-
nated multinormal case.
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n
Example 4.2. Setting H(z) = Zej][ag o0)(?) in expression (2.2), where 0 <
J7

j=1
n
€ <1, ch2- >0forje{l,---,n}and Z €; = 1, we obtain the family of contaminated
J=1
multinormal distributions with mean parameter § and known dispersion parameters
(02, €1),--, (02, €,). The function c*(\), A > 0, defined by (3.1) becomes

ijfp()‘, 012)
CO) = (p- 35— :
Z ‘igfp(’\ ‘7]2)

=19

and the decision rule 6 represents, by Theorem 3.3, the best Lindley type esti-
mator when § € ©,. The quantities f,(A, 0]2) can be evaluated by using the resul:s
of Lemma 4.1. In particular, for p = 7, using expressions (4.1) and (4.2), we obtain

oS
D) = F(5)
= A2\ -2z+ 2ze‘)‘2/2z) , A>0, z>0,
and,
€075 p - 2032 + 20]2-6_/\2/2012')

(M) =41

o
' €; (A% — 2(7]2- + 20?6_A2/20§)

1
n
7=1

Example 4.3. Setting £(z7!) = Gamma(a,b), a > 1 and b > 0, in the rep-
resentation given by expression (2.1), we obtain the family of multivariate student
distributions with mean parameter 8 (the condition @ > 1 guaranteeing the existence
of a covariance matrix) and known dispersion parameter (a,b). Here, we extend the
usual class of multivariate student location families with n degrees of freedom, where

n=2a=2band n € {1,2,---}, to include other values of the dispersion parameter
(a,b). For the particular case where p = 5, we obtain by expressions (3.1) and (4.2,

/\2

B 2)=f (52) =2"2(1-e %), A>0, 2>0,
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and

Jio,00 2(1 — e X1%)dH ()
Jo00)(1 — €7¥/%)dH (2)
f(O,oo) (,U-—l _ U—le—)\zv/2)va—1e—b’vdv
2 1 — e~ Mv/2 ve—le—bvdy
(0,00)

2b [1 - (ﬁ)aj .
EE)
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