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Diagnostics of partial regression
and partial residual plots
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Abstract

The variance inflation factor can be expressed by the square of the ratio
of t-statistics associated with slopes of partial regression and partial residual
plots. Disagreement of two sides in the interpretation can be occurred, and we
analyze it with some illustrations.

Key Words and Phrases: Multicollinearity, Partial residual plot, Partial regres-
sion plot, Regression diagnostics, Variance inflation factor

1. Introduction

There are various diagnostics for multicollinearity, nonlinearity, heteroscedastic-
ity and other problems. Residual plot is widely used as a means of examining the
aptness of a model and finding the true functional form of covariate. One is the
partial regression plot which is discussed or illustrated by Draper and Smith(1981),
Anscombe(1967), Mosteller and Tukey(1977), Belsley, Kuh and Welsch(1980), and
Weisberg(1980) etc. The partial residual plot which is well-known as a method
for checking direction of the nonlinearity of a regressor is discussed by Larsen and
McCleary(1972). And Wood(1973) called it as a residual plus component plot.
Ezekiel(1924) was the first to use such a plot to determine if a regressor should be
transformed. In this paper, we show why partial residual and partial regression plots
are useful in multiple regression analysis.

One way to determine the multicollinearity is looking at variance inflation factor
(VIF) proposed by Marquardt(1970). We concentrate on the relationship between
variance inflation factor and two alternative plots, partial regression and partial
residual plots, for least squares regression to understand regression diagnostics. We
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have to concern something to check multicollinearity from VIF. This paper analyzes
the benefit of using both partial regression plot and variance inflation factor for
diagnosing the multicollinearity.

2. Partial regression and Partial residual plots

Partial regression plot(added variable plot) is refined residual plot that does
show the proper relation for an independent variable while standard residual plot
does not display the nature of the relation for the independent variable that should
be represented in the regression model.

Suppose the full-rank regression model for independent observations as

Yyi=Po+ Pz +-+ g +e, i=1,2-n (2.1)

where ¢; is assumed to be N(0, c?). In vector form, the model is ¥ = X3 + € where
X is the n x (k+ 1) matrix with columns Xy, X1, - - -, Xz and Xj is column vector of
I’s. Here, partition X to (X(;), X;) where X; is the new added variable and Xy is
n X k matrix without X;. The new modelis Y = XBg +XiBj+e, 7 =1,2,--- k.

Suppose we are interested in whether X is needed or not. Let U be the hat
matrix about X;), that is U = X(j)(ij)X(j))_lXEj). To use more conveniently we
make as orthogonal to X;, that is X;* = (I — U)X; and T* as the hat matrix about
X;*.

& * ¥ ey Tyl
! -1 _
= (I-U)X;(X;(I - U)X;) " X(I-U).

We can write V = U+T"*, where V is hat matrix about containing all independent
variables, since X(;) and X ; are orthogonal.

Let ey)x; be residuals from the regression of ¥ on the independent variables
without Xj;.

ey[Xj = (I— U)Y = (I-—- (V - T*))Y
= e+ (I -U)X;5 (2.2)

where e are residuals from regression of Y on the all independent variables. Taking
expectations over e in (2.2) gives

E[Cyp(j] = (I - U)XJBJ

which suggests that a plot of ey X; versus (I-U)X; will be linear through the origin.
Because it is a simple linear regression of ey, x;on (I-U )X, the slope of partial

regression plot is 3 same as the full model (2.1).
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Since the horizontal axis of partial regression plot is (I —U)Xj;, it is not sufficient
to show the direct relation between X; and Y. Considering this aspect we define
the new residuals e* as the partial residuals replacing U by 0 in (2.2), that is

e = e+ X;B;. (2.3)

We call the plot of e* versus X; as partial residual plot(component plus residual
plot). It should be noted that the e* are actually pseudo-residuals in that they are
not residuals obtained from either using X; or not using X;. The slope of the partial
residual model (2.3) is the same as the slope of full model, 3, since the model (2.3)
is a simple linear model. Partial residual plot is very useful to detect nonlinear
term about new-added variable in multiple regression. But this plot ignores the
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effect of multicollinearity and conveys a misleading impression of the significance of

the fit, as noted by various authors like Larsen and Mccleary(1973) and Cook anc
Weisberg(1982).

3. Relationship between Variance inflation factor(VIF)
and Two residual plots

In multiple regression analysis, one is often concerned with the nature and sig-
nificance of the relation between the independent and dependent variables. When
the independent variables are correlated among themselves, it is said to exist multi-
collinearity among them. Since multicollinearity inflates va.r(ﬁj) and causes problems
with the sign of the ,6] and confidence interval for B,, it is important to be able tc
detect multicollinearity when it exists. One way to detect the presence of multi-
collinearity is looking at VIF' proposed by Marquardt(1970). Let’s consider about
the model (2.1) that is discussed in previous section. In vector form, Y = X3¢, the
name of the diagnostic arises from writing the variance of the least squares estimator

Bi(G =1, ,k) as
var(Bj) = 0‘2(X/X)—1jj
o 1
¥ (mij — %;)° 1 = R}

where R]2~ is the R? statistic from the regression of X; on the other independent

variables. Then variance inflation factor for [3 is

The variance inflation factor is equal to 1 when R_? is zero, i.e., when Xj; is not
linearly related to the other covariates. When R]z is not zero, VIFj is greater than
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1 indicating an inflated variance for Bj- Unfortunately, there is no perfect critical
value for what is needed to have a ”large” VIF. But multicollinearity is declared
to exist if the VIF value is in excess of 10 by Chatterjee and Price(1991).

Although both the partial regression and partial residual plots have the same
slope Bj as discussed in previous section and the same residuals, é =Y — X B , their
appearance can be remarkably different since the X-axis’ are not equal. Consider
the variances of slope in two alternative residual plots. First, the estimated variance
of the slope for Bj in the partial regression plot is

T n-— (k+ 1)»\2 -1
Vari® = —— 56" (X'X)j;
n—(k+1) 2

(3.1)

&
n=2 ¥ (z;—;)°(1- RY)

where 62 = 3°; €2 /(n—(k+1)). With adjustment for degrees of freedom the apparent
estimated variance of the slope based on the partial regression plot is the same as
the estimated variance of Bj from the full regression.

On the other hand, the estimated variance of the slope for based on the partial
residual plot is

—(k 52
Va,r]r_es — n (_; 1) o —
n > (x5 — X;)

which ignores any effect due to fitting the other variables. We can easily see that
the variance in (3.2) can be much smaller than the variance in (3.1) if R]2- is large.
Also, the partial residual plot will present an incorrect image of the strength of the
relationship between Y and X (conditional on the other Xs).

Comparing (3.1) with (3.2) the difference between two variances is 1/(1 — RJZ)
As Robert A. Stine(1995) suggested, VIF can be written as the ratio of variances
of the slopes in two residual plots. That is

Var™;
Varres;

I:Bj/, /Va,,.res:I 2
B/ Varra

Since the slopes of two alternative plots are equal, VIF} also can be expressed by
square of the ratio of the t-statistics dividing both numerator and denominator by
ﬁ? in (3.3). The value of VIF is more than 10 means the square of the ratio of the
t-statistics exceed 10 and there exists severe multicollinearity. The large value of
VIF; tells us X; variable is highly correlated with the other covariates and don’t
need to add to the model. But, although the square of ratio is very large, if the slope

(3.2)

VIF; = (3.3)
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of the partial regression is significant, we are in something of a dilemma. Here, we
should consider both VIF; and significance of 3; in partial regression plot to check
multicollinearity.

4. Illustrations

We analyze 2 examples to understand the two plots and VIF we have discussed
so far. The wildcat example in exercise 7.21 of Gujarati(1995) considers a time-
series regression with substantial collinearity. The data consists of the number of
wildcats drilling activity as dependent variable, price at the wellhead in the previous
period(X;), domestic production(X3), GNP constant(X3) and time trend(X,).

In this example, we can see that the slopes of two residual plots from Table 2
are equal to the estimated regression coefficients in full model from Table 1. And
all of the slopes in partial residual plots are more significant than those of partial
regression plots.

partial regression plot of xi partial residual plot of x1

Figure 1. Two residual plots with X; and X4 in Wildcat data
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<Table 1> Summary statistic of the Least Squares Regression Model fitted using
Wildcat data for 31 observations. Goodness of Fit statistic is f = 8.917(p = 0.0001)
and the square of the multiple correlation is R? = 0.587.

Variable Estimate Standard Error t-statistic VIF

constant  35.659 525.94 0.068 n.a.
X1 2.700 0.700 3.865 3.59
X 3.045 0.941 3.236 12.50
X3 -0.016 0.008 -1.948  55.19
X4 -0.023 0.273 -0.085  68.69

It is because of multicollinearity as we already discussed. If the variable of
interest is X; or X4, then the interpretation of VIF is same as the partial regression
plot. That is, X4 is highly correlated with the other covariates(VIF=68.69) and we
don’t need to add it to the model because the slope of partial regression plot is not

partial regression plot of 2 partial residual plot of X2
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Figure 1. Two residual plots with Xy and X3 in Wildcat data
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significant(p=0.4608). In the other case, the slope of partial regression plot for Xy
is very significant (=0.0019). It means that the independent variable X5 has much
information to predict dependent variable and is needed to the model. But the value
of VIF(=12.50) which is more than 10 tell us that X5 is highly correlated. At this
point the analyst is in something of a dilemma. It’s very similar with X3. If we only
see VIF;, we will conclude X3 is not an important variable. But both slopes of two
residual plots are significant in figure 2.

<Table 2> Summary statistic on partial regression plots(left) and partial residucl
plots(right) when X3 is the added variable.

New Added slope S.E. t-stat. p-value slope S.E. t-stat. p-value
variable (= §;) (=5)
X, 2700 0.6625 4.082 0.0003 2700 0.349 7.735 .0001
X 3.045 0.891 3417  .0019 3.045 0.252 12.082 0.0001
X3 -0.016 0.008 -2.057 0.0488 -0.016  0.001 -15.281 0.0001
Xy -0.023  0.259 -0.090 0.9288 -0.023 0.0312 -0.747  0.4608

Second example given by Wood(1973) is for comparing the behavior of the partial
regression plot and the partial residual plot when nonlinear term is needed. 40
observations were generated as Y = 20 + 20X; — 3X, — X? + ¢, where esimN(0,1).
The values of X; and X3 used to generate observations 1-20 were repeated for
observations 21-40.

Using the first 20 data points like Mansfield and Conerly(1987), the plots are
presented in figure 3. The second graph which is the partial residual plot shows
the nature of the curvilinear relation between Y and X;, when X; is already in the
regression model. Vertical deviations around the line with slope beta; are negative

partial regression plot of x1 partial residual plot of xi

Figure 3. Two residual plots of X; Wood data
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at the left, positive in the middle, and negative again at the right. But the partial
regression plot fails to indicate the need of quadratic term.

<Table 3> Summary statistic using Wood data for 20 observations. Goodness of
Fit statistics is F = 80.918(p = 0.0001) and the square of the multiple correlation is
R? =0.905.

Variable Estimate S.E t-statistic p-value VIF

constant  29.612 2.836  10.441 .0001 n.a
X3 12.222  1.165  10.491 .0001 4.07
Xs -3.046  0.240 -12.679 0001 4.07

5. Conclusion

The difference between partial residual and partial regression plots comes from
R2. Although partial residual plot ignores any effect due to fitting the other vari-
ables, partial residual plot is more sensitive to display the correct form of the re-
gressor variable. We analyzed the relationship through VIF and two alternative
residual plots. Since the slopes of two alternative plots are equal, VIF can be
expressed by square of the ratio of the t-statistics for slopes as we showed. The
large value of VIF means the regressor is highly correlated with the others. But if
the slope of the partial regression is significant, although the square of ratio is very
large(VIF > 10), we are in something of a dilemma to interpret. We concluded that
it should be considered both VIF and significance of Bj in partial regression plot to
check multicollinearity. Of course, we also consider a variety of remidial measures
for dealing with these multicollinearity problems, including ridge regression, factor
and principal component analysis, and bayesian regression.
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