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Second Order Approximations to the Stopping Time
with Fixed Proportional Accuracy !

Kiheon Choi 2

Abstract

Suppose that there is a population of hidden objects of which the total
number N is unknown. From such data, we derive second-order approximations
to the stopping time with fixed proportional accuracy.
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1. Introduction

Consider a problem which require us to find, observe, or catch some of or all
of a group of hidden objects as prey. Examples of such prey are fish in a lake,
potential voters in a voter registration drives, donors to charitable organizations,
disintegrating atoms in a radioative source, disease carriers, or relics at the site
of an archaeological dig. This problem has been considered by several authors,
including Starr(1974), Vardi(1980), Dalal and Mallows(1988).

Thus, consider an area containing N prey. Imagine the prey are labelled 1, - - -, N;
let T; denote the time at which we would capture the prey labelled i if we are to
search indefinitely. We suppose throughout that Ti,---,Ty are independent and
identically distributed with a continuous distribution function F for which F(0) = 0.
The distribution function F' may depend on an unknown parameter 6, or not. Let
t; < --- < tn denote the order statistics of Ty, - -+, Ty. If the search is continued for
t units of times, then the available data consists of the number of objects found anc
the times at which they were found; in symbols,

Ki=#{k<N:T, <t}
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Let N, denote an estimator of N. Then, stopping time 75, are sought for which
Z’LmN—)OOPN{INTh - Nl S hNT},}?

is computed for fixed h > 0 for all values of unknown parameter 8. We derive a
second order term to the confidence interval for stopping time with fixed proportional
accuracy.

2. Second order term for stopping time

F is assumed to be known, continuous distribution function that is strictly in-
creasing on the interval (0,br), where bp = sup{t : F(t) < 1} < oo. Then the
maximum likelihood estimator of F' after ¢ time units of observation is (an integer

adjacent to )
N K;

t:—

F(t)
for 0A< t < bp. Since Igt has binomial distribution, the mean and variance of N; are
En[N;] = N and D%[N;] = No?(t), where
1
2
=——=1

and NV, is asymptotically normal as N — oo for fixed ¢ > 0; that is

N,— N
o M

where = denotes convergence in distribution and Z denotes the standard normal
distribution ®. In fact, (1) holds for sequences t =ty > 0 for which No?(ty) — oo
as N — oo. Using asymptotic normality to set an approximate to confidence interval
and imposing the condition that the half width of the interval be at most AN,
as in Chow and Robbins(1965), suggests sampling until N; > 2202(t)/h2, where
®(z) = (14 7)/2 (and v is desired confidence coefficient).

Now F = Fj is assumed to be an exponential distribution with unknown failure
rate §, Fy =1—e7% for £ > 0.

Let h be a fixed length, we have

N

N;
Pno < N

as N — 00, and we need

hv'N

kv N

o(t0) z2
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This suggests that we continue sampling until

-

4
Ne s —. (2)
02(t0t) h
Consider small ¢, say
t]o0.
Then
1—e ¥~ to,
12
2
g (t0) ~ @—3‘,
and

N, ()N, _ (t0:)°K,
02(tét) 12 12
Further, recalling that K; has a binomial distribution, it is then easily seen that the
conditional density of X; =t;/t,j =1,---,k, given that K; = k, is the same as the
distribution of the order statistics of a sample of size k from the density

fole)= 25— 0<z<i,

T 1w’

where w = 6t. Let u(w) denote the mean of f,,. Then, by Taylor expansion,

— 1 1 2

so that

t0; ~ 6 [1 - Zp(tét)] =6 [1 - 2%] :

where S; =t; +--- +tk,. So,

A

2
N ~ 3K, [1—2-‘%] )
a?(t6;) tK;

Using these approximations and letting 2, = maz(0, z), relation (2) may be rewrit-
ten: continue sampling until
Si12 4
3Ki |1 -2—| > —.
’* [ thL = h?

This in turn suggests the stopping time,

Th = inf {t >0: 3[tK, — 25,2 >
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where the term 1/h? has been added to discourage early stopping.
For the asymptotic, suppose (without essential loss of generality) that

=1

and consider small t, say
where 0 < s < 0co. Then

as N — oo. Let
K¥(s)=N73[K, —~ N(1-¢™)]

and
An(s) = V3[tK; — 28;).

Thus,
1
Nir, = inf {s >0:An(s) > E\/4t2Kt + 1}
There is a simple relation between Ky and K?v,

Kn(s) — KY(s) = N3[1—e —t]——+—1—s2

uniformly on compacts in 0 < s < co.
Next let B(s), 0 < s < o0, be a standard Brownian motion, and let

A(s) = \/gfos(s — 2u)dB(u) + ?333.

Observe that A(s) is a Gaussian process with mean and covariance functions

BlAGs)] = L

CovlA(s1), A(s)] = 3 / " (51— 2u) (52 — 2u)du

4
= 3[3132u —_ (81 + 32)“ + 3u u—0
= S%

for 0 < 81 < 89 < 0. Thus fl(s) = A(sl/ 3) is Brownian motion with drift parameter
and unit diffusion parameter. This may be written as the stopping time

1
N%Th=>nh=inf{s>0:A(s)+2—’; 4$3+1},
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as N — oo.

Now if the procedure is modified slightly, then it is possible to make of the
coverage probabilities exceed y for all sufficiently small 4 > 0. Let W be a Brownian
motion with drift  and let us consider the stopping time

T, = inf{t > 0: W(t) + 0t > va(t)}

with T = oo if the set is empty. We will consider continuously differentiable

functions
Ya(t) = y/2(at +c¢), ¢ > 0.

limN—’OOPN{INTh - N[ < hNTh} = P{ W;(TJ}Z) - 1‘ < h}’

Therefore

where a = 2/h?. Using the second order approximation to the density of Brownian
first exit times. Jennen(1985) showed that the density f,(t) of T, is asymptotically
equivalent to the density of the first exit time over the tangent approximation with
second order term

3/2,1,1 9
fat) = [At‘;g) + t2A:b(at§§) 1+ 0(1))] : #exp (—w“2(tt) ) ,

where Ag(t) = 1,(t) — ty,(t) is the intercept on the vertical axis of the tangent to
the curve at ¢.

Theorem 2.1

s EU A
p —1{<hp = t
(I -1 < [* ratyar
= 28(2) - 1+ O(h?),
where ap, = 2a/6* + d\/a, by, = 2a/6? —b\/a , d = 44642 - 02‘:/5 and b= ‘ha@ +672%/_;.,
Proof. Now we know

MO ACIE! (v2(at + c) — 6t)?
U s Twor Ry = 2

And

L), fa, 3¢
Vit N\E+\/8_at

\/2(as+c) = 20711 + %(am—l—c).

Let s = 2a/6% + x, then
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So the integral of the first part of right hand side of (3) is

/Za/02+d\/ﬁ AG(S) 1 e—a—c/s—023/2+<9\/2(a.<>‘—+—c)d's
2/6%-b\/a 832 \Jox

— e~ / \/_+3C - —c/s—-02s/2+0\/ (as+c) ds
\/271'

— e @ - /\/g;e—c/s—925/2+0\/§(as+c)d8
Vv aT

+e @ 1 3c le—c/s-—(izs/2+0\/2(as+c)ds
Vam 8as s
= (I) + (I} (say)

Now

N = / \/‘ e—c/s— —0%5/240+/2(as+c) )d
(1) Sy s

1 d\/- 02 1 1 02m 0412+04cz
—/ ——=1——— e T "sldr
Vo Jobja 22 Vas 4a

Applying the change of variables, we get

d g2 6%u gy
) = / — Je 16 d
O~ 7= b2\/_( 4a>e i

X

d 1 of 22
~ /—b 2#(33@)6 G)du

-/, %Z%@) (ff) )

(h) + (I2)  (say)

Then

d 1 2v2
() = /———e“eé: du
~b /21
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= P{—2—\/g<2<2—\@}
R

&

B(2) — B(~2) —

Similarly, we get

d 1 0%y 2292
(I) = —/_b 271_(23@)(4\/&)6 ( )du

22 51
N e
So,
(I = (I)+ D)
= <I>(2)—<1>(—2)+0<515).
Also,

(II) = e 12 :;C i—c/s ~025/2+0+/2(as+c) )ds
V 4T as

- of3).

The second part of right hand side of (3) is

/2a/92+d\/‘; 'lﬁ”( ) 3/2 1 e—a—c/s—02s/2+9\/2(as+0)ds
2

a/62-bya 2A,(s)° Var
1
-~ [8(2) - 3(~2)].
Thus we prove the theorem.
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